scholarly journals Studi Optimasi Operasional Waduk Koto Panjang Untuk Pembangkit Listrik Tenaga Air

2021 ◽  
Vol 21 (01) ◽  
pp. 31-44
Author(s):  
Diana Hanafi ◽  
Harmiyati

[ID] Pada musim kemarau PLTA Koto Panjang pernah mengoperasikan satu unit turbin dan generator sehingga daya yang dihasilkan tidak maksimal. Pada musim yang sama PLTA ini juga pernah mengoperasikan tiga unit turbin dan generator namun hanya menghasilkan daya listrik  35 MW dengan prosentase  50 % yaitu  30,702 % dari daya maksimal pengoperasian tiga unit turbin dan generator. Tujuan dari penelitian ini adalah untuk mengetahui debit andalan PLTA Koto Panjang, optimalisasi yang dilakukan dalam mengoptimasi PLTA Koto Panjang, daya listrik yang dihasilkan dari hasil optimalisasi tersebut dan perbandingannya. Metode empiris Penman digunakan untuk menghitung nilai evaporasi. Debit andalan untuk debit outflow PLTA saat ini dan setelah dioptimalisasi dihitung menggunakan rumus daya listrik dan metode mass curve. Selanjutnya debit outflow PLTA yang telah didapatkan dianalisis di dalam tabel water balance menggunakan metode sequent peak analysis. Hasil yang didapatkan adalah debit andalan PLTA saat ini dan setelah dioptimalisasi yaitu 305,319 m3/det dan 384,465 m3/det dengan prosentase 51,995 % dan 39,235 %. Optimalisasi dilakukan dengan menyesuaikan debit outflow dengan volume air yang ada pada storage saat itu. Daya listrik setelah dioptimalisasi adalah sebesar 13.302,315 kWatt pada musim kering dan 143.551,645 kWatt pada musim hujan. Daya listrik yang dihasilkan PLTA saat ini adalah sebesar 13.302,315 kWatt pada musim kering dan 114.000 kWatt pada musim hujan. Sehingga daya listrik yang dihasilkan PLTA setelah dioptimalisasi mengalami kenaikan dari daya listrik sebelum dioptimalisasi sebesar 29.551,645 kWatt. Karena kenaikan daya melebihi kapasitas generator PLTA saat ini, maka terjadi penambahan 1 generator 30.000 kWatt atau 30 MW. [EN] In the dry season, Koto Panjang Hydroelectric Power Plant has operated one turbine and generator unit so the power produced is not optimal. In the same season, this hydropower plant has also operated three turbines and generators but only produces  35 MW of electricity by percentage  50% which is  30,702 % of the maximum power from operating three turbine and generator units. The purpose of this research is to determine the mainstay discharge of Koto Panjang Hydroelectric Power Plant, optimization will be used for Koto Panjang hydroelectric power plant, power can produce from its optimization and its comparison. The Penman empirical method was used to calculate the evaporation value. The mainstay discharge for hydropower plant outflow discharge at this time and after being optimized is calculated using the electrical power formula and the mass curve method. Furthermore, the hydroelectric power plant outflow discharge has obtained is analyzed in the water balance table using the sequent peak analysis method. The results obtained are the current mainstay discharge of hydroelectric power plant and after optimization, which are 305,319 m3/s and 384,465 m3/s with a percentage of 51,995% and 39,235%. Optimization is done by adjusting the outflow discharge to the volume of water in the storage at that time. The electric power after optimization is 13.302,315 kWatt in the dry season and 143.551,645 kWatt in the rainy season. The current electricity generated by hydroelectric power plant is 13.302,315 kWatt in the dry season and 114.000 kWatt in the rainy season. Therefore the electric power generated by hydroelectric power plant after optimization has increased from the electric power before it is optimized which is 29.551,645 kWatt. Because the increasing of the electric power exceeds the capacity of the current hydroelectric power plant generator, there is an addition 1 generator which is 30.000 kWatt or 30 MW.

2021 ◽  
Vol 12 (2) ◽  
pp. 119-130
Author(s):  
Hiro Agung Pratama ◽  
Jazaul Ikhsan ◽  
Apip Apip

The Menjer lake is the main source for Hydroelectric Power Plant of the PLTA Garung. Information about the water balance and the potential of existing water resources in the Menjer Catchment Area (DTA) is needed to obtain an efficient operating pattern, the sustainability of the Garung hydropower plant, and good management of the Menjer Lake. The purpose of this study was to estimate the inflow of three main rivers in the Menjer catchment area using HEC-HMS hydrological and water balance approach. Simulated results of the HEC-HMS model shows that the average of total the inflows of three main rivers to the Menjer lake in 2017, 2018 and 2019 during rainy season are 0.954 m3/s, 0.944 m3/s, and 1.017 m3/s, and during dry season are 0.820 m3/s, 0.783 m3/s, and 0.80 m3/s, respectively. While the prediction results of the discharge with the equation of the water balance shows that the average of total river inflows to the Menjer lake during rainy season is 2017 is 1.628 m3/s, in 2018 it is 1.579 m3/s, and in 2019 it is 3.296 m3/s and during dry season is 1.893 m3/s in 2017, 1.176 m3/s tahun 2018, and 1.893 m3/s in 2019. These results indicate that the results of discharge modeling with HEC-HMS are smaller than those predicted by the water balance equation. The study concluded that HEC-HMS could be used to predict daily inflows. However, further calibration and validation need to be carried out by recommending installing a river flow monitoring station at each river outlet.Keywords: water balance HEC-HMS, inflow prediction


2018 ◽  
Vol 1 (2) ◽  
pp. 293-303
Author(s):  
Diego Fernando Rodríguez-Galán ◽  
Andrés Escobar-Díaz

In this study a presentation is made of the Small Hydroelectric Power Plant (PCH) located in Usaquén (Bogota), the work is based on an engineering project carried out by the Aqueduct and Sewer Company of Bogotá (EAAB). It is addressed first of all the environmental problems considered in this project and the business context that propitiates it, taking into account the technical background of the operation of the aqueduct system of the city. In second instance, the technical generalities and the scopes that were estimated in the formulation of the project are exposed to finally contrast them with the results obtained after five years of operation of the project.


2021 ◽  
Vol 19 (1) ◽  
pp. 80
Author(s):  
Akbar Tanjung ◽  
Arman Jaya ◽  
Suryanto Suryanto ◽  
Apollo Apollo

One form of water energy utilization is done by building a Hydroelectric Power Plant (PLTA) in Indonesia, the Bakaru PLTA is one of the projects within PT. PLN (Persero). This project is a Hydro Power Plant Master project with a SULSELRABAR transmission located 246 km from the city of Makassar. The operation of the Bakaru hydropower system is certainly expected to work optimally, reliably and efficiently. Therefore, evaluation or data on the performance of the generator itself is needed. This study was conducted to determine the condition of the Bakaru hydropower plant based on the equivalent availability factor (EAF) and Net Capacity Factor (NCF) and Cost of Production (BPP). The data used is operating data on the Bakaru hydropower plant for 1 year. The data was obtained by using the documentation technique, while the data analysis was carried out using the Microsoft Excel program. After conducting research, it can be concluded that the condition of the Bakaru hydropower plant in 2017 is considered normal, seen from the EAF value reaching 94.15% and the average EFOR value of 2.4% with the number of Service Hours (SH) of 16,912.93 hours from 2 units. with the percentage of Service Hours to Period Hours reaching 96.53%. Meanwhile, the Net Capacity Factor of the Bakaru hydropower plant in 2017 reached 85.83%, with a total gross energy production of 945,372.50 MWh. This value exceeds the target that has been set.


2015 ◽  
Vol 785 ◽  
pp. 516-520 ◽  
Author(s):  
Anis Shazwani Zulkifli ◽  
Noor Miza Muhamad Razali ◽  
Marayati Marsadek ◽  
Zainuddin Yahya ◽  
Tengku Juhana Tengku Hashim

—Hydropower energy is widely used throughout the world. It is the only renewable energy that is presently commercially practical on the large scale. In order to maintain the hydropower plant in good condition, the performance of the power plant needs to be monitored constantly. Efficiency curve helps in studying the performance of the turbine under various conditions and this is the best way to look for the performance of the power plant. Therefore, this paper presents the relationship between load (MW) and efficiency of each turbine and generator unit. This project uses Microsoft Excel 2010 software to produce a graph from the exact data produced from the database. This paper’s objective is to compare the theoretical performance curve and the calculated performance curve and also to discuss the hydroelectric power plant performance.


2013 ◽  
Vol 659 ◽  
pp. 208-212
Author(s):  
Zhi Jian Wu ◽  
Ying Zi Song ◽  
Hai Song Zhou

This article describes an software architecture and functional design of the meteorological information system based on Web technology, which embedded a smart hydropower plant system ,introduces an actual construction of a hydroelectric power plant meteorological information system of a smart hydropower plant. At the same time, explore the prospects and development direction of the meteorological information system smart hydropower plant.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Sri Widodo ◽  
Kun Suharno ◽  
Sigit Mujiarto ◽  
Nazarudin Rif'at Rasyidi

Indonesia has the potential of water that can become electricity with a hydroelectric power plant. In addition, the distribution of the PLN network has not reached all regions of Indonesia. From these problems the author made a hydropower generator by comparing the number of blades used with a number of 8, 10, and 12 pieces. This study aims to determine the power that will be generated from the number of blades. Data retrieval is done by calculating the power produced by the turbine with a variation of the test time of 20 minutes by 5x. The working principle of this tool is that the water will rotate the wheel connected to the generator with the help of shafts, bearings, pulleys, and V-belts that produce electrical power in the battery so that the electricity can be directly used. The results obtained that the output power is the largest in the use of a number of 12 pieces of blades namely 0.0687 HP, while the number of blades 8 and 10 pieces produces the amount of output power of 0.0627 HP and 0.0652 HP.


2019 ◽  
Vol 57 (1) ◽  
pp. 312-317
Author(s):  
Felipe Dutra Rêgo ◽  
Maria Angélica de Oliveira ◽  
Gustavo Mayr de Lima Carvalho ◽  
José Dilermando Andrade Filho

Abstract Hydroelectric power stations may affect the population dynamics of mosquitoes and sand flies, a group with impact on public health due to the possibility to transmit pathogens to humans. This work characterized and compared the fauna of mosquitoes and sand flies in a hydroelectric power station and peridomicile areas in the State of Minas Gerais, Brazil. Insect collections were performed in August 2015 at dry season and February 2016 in rainy season. Ten HP light traps were set at each of two sites for three consecutive days in each of two seasons (dry and rainy). Furthermore, collections with Shannon traps were made in each sampling area (hydropower plant and peridomicile area) from 4:00 p.m. being shut down at 8:00 p.m. for two consecutive days in each of two seasons (dry and rainy). In total, 1,222 insects from 13 genera and 27 species were collected. The most plentiful species were respectively Culex declarator (Dyar and Knab, 1906) and Pintomyia pessoai (Coutinho & Barretto, 1940). A high number of insects (78.5%) were collected during the rainy period (P < 0.05). About equitability, statistical significance was observed in the peridomicile area (dry season J = 0.75 and rainy season J = 0.82). The highest values of species diversity were observed in the hydropower plant (H = 2.68) and peridomicile area (H = 2.38) both in the rainy season with statistical significance comparing with dry season. Our results demonstrate that the occurrence of vector species in this region increases the potential risk of transmission of pathogens, especially arbovirus and Leishmania Ross, 1903.


2002 ◽  
Vol 122 (6) ◽  
pp. 989-994
Author(s):  
Shinichiro Endo ◽  
Masami Konishi ◽  
Hirosuke Imabayashi ◽  
Hayami Sugiyama

Author(s):  
Michal Kuchar ◽  
Adam Peichl ◽  
Milan Kucera ◽  
Jaromir Fiser ◽  
Pavel Kulik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document