Jurnal Teknik Hidraulik
Latest Publications


TOTAL DOCUMENTS

52
(FIVE YEARS 42)

H-INDEX

1
(FIVE YEARS 0)

Published By Puslitbang Sumber Daya Air Kementerian Pupr

2580-8087, 2087-3611

2021 ◽  
Vol 12 (2) ◽  
pp. 107-118
Author(s):  
Agus Mochamad Ramdhan ◽  
Arifin Arifin ◽  
Erik Hermawan ◽  
Lambok M. Hutasoit

Groundwater remediation is one of the solutions to restore the contaminated groundwater. This study was conducted to determine the effect of hydraulic conductivity and dynamic dispersivity on the groundwater remediation effectiveness. As a case study, in 2020, in an area located in Balikpapan, groundwater remediation will be carried out by injecting water containing NaOH through five wells and pumping it back through five wells to form a cycle. The method used is a numerical simulation consisting of groundwater flow simulation, mass transport, and sensitivity analysis. The results show that it takes 124 to 300 days for the injected NaOH to arrive at the pumping wells. The sensitivity analysis results show that when the hydraulic conductivity value is ten times greater, the time required is reduced to 84 to 172 days. Meanwhile, when the dynamic dispersivity is twice larger, the time required is reduced to 75 to 189 days. These results indicate that the groundwater remediation method will be effective for aquifers with high hydraulic conductivity and dynamic dispersivity values. For the study area, the groundwater remediation is suggested to be carried out by increasing the number of injection and pumping wells with a relatively close distance, i.e., around 10 meters, so that NaOH arrives at the pumping wells more quickly.Keywords: groundwater, remediation, hydraulic conductivity, dynamic dispersivity, numerical simulation


2021 ◽  
Vol 12 (2) ◽  
pp. 119-130
Author(s):  
Hiro Agung Pratama ◽  
Jazaul Ikhsan ◽  
Apip Apip

The Menjer lake is the main source for Hydroelectric Power Plant of the PLTA Garung. Information about the water balance and the potential of existing water resources in the Menjer Catchment Area (DTA) is needed to obtain an efficient operating pattern, the sustainability of the Garung hydropower plant, and good management of the Menjer Lake. The purpose of this study was to estimate the inflow of three main rivers in the Menjer catchment area using HEC-HMS hydrological and water balance approach. Simulated results of the HEC-HMS model shows that the average of total the inflows of three main rivers to the Menjer lake in 2017, 2018 and 2019 during rainy season are 0.954 m3/s, 0.944 m3/s, and 1.017 m3/s, and during dry season are 0.820 m3/s, 0.783 m3/s, and 0.80 m3/s, respectively. While the prediction results of the discharge with the equation of the water balance shows that the average of total river inflows to the Menjer lake during rainy season is 2017 is 1.628 m3/s, in 2018 it is 1.579 m3/s, and in 2019 it is 3.296 m3/s and during dry season is 1.893 m3/s in 2017, 1.176 m3/s tahun 2018, and 1.893 m3/s in 2019. These results indicate that the results of discharge modeling with HEC-HMS are smaller than those predicted by the water balance equation. The study concluded that HEC-HMS could be used to predict daily inflows. However, further calibration and validation need to be carried out by recommending installing a river flow monitoring station at each river outlet.Keywords: water balance HEC-HMS, inflow prediction


2021 ◽  
Vol 12 (2) ◽  
pp. 65-78
Author(s):  
Muhammad Iqbal Hamidi ◽  
Imam Achmad Sadisun

The construction of the Tugu Dam spillway does not escape the problem of slope instability, especially the rock fall type landslide as a result of the rock slope cutting work at STA+80. The purpose of this study was to determine the characteristics of the rock discontinuity area and the solutions needed to address the potential hazards of rock fall on the slopes of spillway structure. In this study, a semi-quantitative method conducted based on the Rockfall Hazard Rating System (RHRS) which is carried out by identifying outcrops on rock slopes. Determination of the rock fall trajectory, was conducted by statistical methods on rock mass based on changes in velocity when rocks roll, slide, and bounce. Geologically, the research area belongs to the Mandalika Formation. Based on the RHRS weighting, the total score on the STA+80 slope is 399, which means that the slope needs to be repaired or given safely with a moderate level of urgency. The rock fall trajectory modeling at the measurement location X = 121,875 has a kinetic energy of 973.14 kJ andesite and 72.59 kJ of volcanic breccia, for high results of 0.43 meters of andesite reflection and 2.04 meters of volcanic breccia, and velocity results translational velocity obtained at 33.8 m/s andesite and 8.67 m/s volcanic breccia. The potential for rock fall requires a safety system with a type of retained flexible barriers with a height of 5 meters that can be applied to the toe of the slope.Keywords: rock fall, discontinuity, trajectory, protection system, Tugu Dam


2021 ◽  
Vol 12 (2) ◽  
pp. 93-106
Author(s):  
Ariberto Jonathan ◽  
Doddi Yudianto ◽  
S Sanjaya

A spillway is one of many important components of a dam, which is operated to prevent the dam from overtopping. Spillway with gate structures requires to have a good operation pattern by considering a minimum critical height and outflow discharge to prevent any flooding events in the downstream part of the spillway channel. The case study in this research is the Delingan Dam which has two ogee spillways, four main sluice gates and four additional sluice gates. Located in Karanganyar District, West Java, Delingan Dam is considered as a vast infrastructure which is potentially threatening if the spillway’s operation is not optimal. This study aims to analyze the spillway gate operations’ pattern of Delingan Dam in order to control the flooding event. The methodology used in this study is flood routing by utilizing several scenarios in order to obtain the optimal simulation results. Five scenarios that were simulated on the designated flood discharge have various combinations on the number of gates and their opening, as well as the time in which the operation started. The results show that the operation only using ogee spillway still meets the criteria for minimum critical height and maximum allowable discharge for return period of 25, 50, and 100 year.As the discharge with 1000 year return period, half of PMF, and PMF,the recommended operation is, foremost, to occupy the main gate in which results in the peak outflow discharge of 23.65 m3/s, 62.4 m3/s, and 140.9 m3/s, with the minimum critical height of 1.45 m, 1.41 m, and 1.35 m, respectively. However, this operation is not adequate for the half of PMF, and the PMF discharge, since the capacity in the spillway channel is estimated about 24.7 m3/s.Keywords: spillway, flood control, spillway gate operation, the delingan dam


2021 ◽  
Vol 12 (2) ◽  
pp. 79-92
Author(s):  
Rais Buldan ◽  
Suharyanto Suharyanto ◽  
Najib Najib ◽  
Kresno Wikan Sadono

A dam, besides having a great benefits to meet human needs, it also can be a big disaster in addition to the dam collapsing. One of the main causes of failure of an embankment dam is the occurrence of excessive seepage which triggers piping events that can disturb the stability and safety of the dam. In general, the body of the Kedung Ombo Dam is in good condition, but there are several problems, such as the drain holes that are overgrown with dense grass which indicates that seepage has occurred. Therefore, it is necessary to evaluate the seepage to determine the safety level of the Kedung Ombo Dam. This study aims to analyze the condition of pore water pressure and seepage that occurs in the body of the Kedung Ombo Dam and to determine the level of safety of the dam body. The analyze was carried out using seepage monitoring instruments installed on the dam, namely the Piezometer and V-Notch at the Kedung Ombo Dam in 2021. Based on the results of the analysis, it was found that the pore water pressure and seepage discharge that occurred in the Kedung Ombo Dam were generally still within the permissible limits. According to the analysis results of the seepage index, the highest QI value is 0.09 at the maximum flood water level of +95 m, where the safety criteria for the seepage index is QI <1. Therefore it indicates that the seepage condition index at the Kedung Ombo Dam are still in a safe condition.Keywords: pore water pressure, seepage, piezometer, V-Notch, seepage index 


2021 ◽  
Vol 12 (1) ◽  
pp. 1-14
Author(s):  
Irham Adrie Hakiki ◽  
Leo Eliasta Sembiring ◽  
Cahyo Nur Rahmat Nugroho

Sagara Anakan Lagoon has been continuously receded caused by the high sedimentation rate. The deposited sediment volume was predicted to be around 1 million m3/year. This phenomenon, if not treated will harm the existing ecosystem and also could cause many kinds of its native biota extinct. Engineering could be applied to prevent it. However, the transport and sedimentation pattern must be known for it to be effective.  Silting in Sagara Anakan Lagoon simulated by using MIKE21 numerical model which could simulate sediment transport in 2D horizontal scheme. The deposited sediment, mainly consisted of mud, so the model must be capable for simulating cohesive sediment transport. Model is set to simulate one year of morphological event which reached with the usage of time speed up acceleration factor. Model calibrated to be able to simulate a deposition event in the order of one million m3/year. Model calibrated by tuning critical bed shear stress for deposition   and erosion  parameters as a base for sensitivity analysis. Model result shown that the sedimentation in Sagara Anakan Lagoon is caused by asymmetry of flood and ebb current. Major siltation happened around the delta with the maximum and mean observed bed change are approximately 0.6 m and 0.16 m respectively. The setup for this model could be used as a base model for planning an engineering approach for controlling sediment in Sagara Anakan Lagoon.Keywords: Numerical model, cohesive sediment, mud transport, estuary modellingKata Kunci: Model numerik, sedimen kohesif, transpor lumpur, pemodelan estuari


2021 ◽  
Vol 12 (1) ◽  
pp. 39-52
Author(s):  
Sujantoko Sujantoko ◽  
Wisnu Wardhana ◽  
Eko Budi Djatmiko ◽  
Haryo Dwito Armono ◽  
Wahyu Suryo Putro ◽  
...  

Floating breakwater (PGT) is designed to be applied as a wave barrier to reduce beach abrasion and wave energy so that waves coming to the beach have their energy reduced. Compared to conventional breakwater structures, PGT structures are more advantageous if the area to be protected from impact waves has a large enough depth. This structure is more flexible because the elevation follows the tides, so this structure can be used as a wharf at the same time. It is also free from the scouring and sedimentation that often occurs on the feet of conventional breakwater structures. This study aims to attenuate and reflect waves from various PGT configurations of piling and mooring types, by testing the physical model of PGT in the wave flume laboratory of the Department of Ocean Engineering ITS, at a water depth of 80 cm, a wave height of 3.5-5.5 cm, a wave period of 0.5-2 seconds, and the angle of the mooring rope (45o, 60o, 90o). PGT is arranged in a variety of longitudinal and transverse directions to the coast. Based on the experiment, it is known that the effect of configuration and width on the PGT structure on wave transmission and reflection is influenced by the mooring angle. Configuration 3 with the largest width can give the best transmission coefficient Kt = 0.797 at 45o mooring angle and reflection coefficient Kr = 0.572 at 90o mooring angle. In type 3 fixed-configuration gives the greatest value Kt = 0.431-0.623 and Kr = 0.053-0.997 compared to other configurations. Because in configurations 1 and 2 the back of the structure is not supported by piles, so a swing occurs which generates waves. While the effect of the slope of the wave, Kt will increase as the number of waves slopes decreases, conversely the value of Kt decreases with the increase in the slope of the wave.Keywords: Floating breakwater, piling, tethered,  mooring 


2021 ◽  
Vol 12 (1) ◽  
pp. 53-64
Author(s):  
Cleon Christopher ◽  
Doddi Yudianto ◽  
Albert Wicaksono

The water need in the Northern area of Bandung City was predicted to be 2.49 m3/s in 2040. The government responded to this issue by planning the construction of several reservoirs in the Cikapundung watershed. A previous study suggested three potential locations, i.e., Cikukang 2, Cikawari 2A, and Cikawari 5A reservoir. Since Cikawari 2A and Cikawari 5A are located on the same Cikawari river, three construction alternatives, i.e., a single reservoir of Cikawari 2A, a single reservoir of Cikawari 5A, and cascade reservoir Cikawari 2A+5A are proposed. Each alternative has its own advantages and limitations, thus evaluation of the best construction alternative needs to be carried out. The evaluation was conducted based on their reliable service in supplying water to Bandung City. This evaluation was analyzed by comparing the projected water demand following population growth and water availability derived from the rainfall-runoff model, NRECA. The analysis was conducted using two variations of dam height and reservoir capacity for each alternative. Based on the analysis results, the single reservoir of Cikawari 2A with 45 m of dam’s height was chosen as the most suitable alternative. It can supply 0.56 m3/s of water and provide water for 30.4% of the citizens in 2020, and decrease to 30.15% in 2040. However, it was also found that the reservoir could only supply 0.44 m3/s of water during the dry period. These results showed that the construction of the reservoir itself could not meet the total water demand. Therefore, another alternative is required to closing the gap in water demand.Keywords: Cikapundung watershed, water supply, Cikawari reservoir, reservoir simulation, service reliability


2021 ◽  
Vol 12 (1) ◽  
pp. 25-38
Author(s):  
Cosmas Bambang Sukatja ◽  
Banata W.R ◽  
Perdi Bahri

The 7.4 SR earthquake which occurred in The Donggala Regency, Central Sulawesi on September 28th 2018 was a shallow earthquake due to the Palukoro fault activity.  The impact of the quake’s shaking created pressure on the rock and soil masses of 77 hilly locations in the Palu, Sigi, and Donggala, causing several landslides and the increasing the potential of more. One of the slopes of at risk of  landslides which can trigger debris flow is found on the hills of Poi Village, Dolo Selatan District, Sigi Regency. The estimated volume of lose material which could fall in a landslide is 4.8 million m3. Rainfall in the area is predicted to trigger debris flow with the potential to bury settlements and block the flow of the Palu tributary located downstream. For this reason, it is necessary to conduct a study of the lose material deposits in the Poi River channel which can trigger debris flows during the rainy season. The problem-solving method in this study used is a rationalistic and descriptive qualitative approach. In predicting the distribution direction, propagation and hydrograph of the debris flow ths study applies the numerical modelling SIMLAR 2.1. This debris disaster risk management effort uses Sabo technology physically and non-physically. Keywords: earthquakes, landslides, debris flow, debris disaster management, Sabo technology physically and non-physically.


2021 ◽  
Vol 12 (1) ◽  
pp. 15-24
Author(s):  
Juventus Welly Radianta Ginting ◽  
Eduardo Meyrianso Simanjuntak ◽  
Ida Ayu Irawati Diah Ratna Putra

Buis Beton (Precast concrete pipe) revetment is a common coastal structure to protect the shoreline from erosion. However, it is common that this type of structure face high wave run up. A continuous wave run up on the slope of the structure may reduce the life service of Buis Beton revetment. The objective of this research is to create scientific based guidance to design an efficient Buis Beton revetment against wave run up. A physical modelling test is conducted to understand the relationship between wave run up and Buis Beton revetment. The test scenario is based on the slope of the structure (θ), structure height (L), buis beton diameter (φ), incoming wave height (Hi) and wave period (T). The physical modelling is conducted in 2D wave flume with laboratory scale of 1:10 with regular wave simulation. Wave run up is observed using a video camera which is later processed digitally to acquire the wave run up data. This research shows that the relative wave run up has a reciprocal functional relationship with the Iribarren Number parameter. In general, wave run up height on Buis Beton revetment is less than or equal to 2.64 the wave height, Hm0.Keywords: Revetment, buis beton, wave run-up, physical modelling


Sign in / Sign up

Export Citation Format

Share Document