Features of potato cultivation at drip irrigation in the Lower Volga region

2021 ◽  
pp. 28-32
Author(s):  
А.А. Новиков

Организация эффективного промышленного производства картофеля – одна из актуальных задач современного российского АПК. Цель исследований: оптимизация режимов орошения и минерального питания при выращивании картофеля с использованием капельного орошения. Исследования влияния водообеспеченности и питательного режима почвы на рост, развитие, водопотребление и урожайность картофеля при поливе системами капельного орошения проводили в 2008–2010 годах на светло-каштановых почвах СПК «Престиж» Ленинского района Волгоградской области. Почвы подзоны характеризуются маломощными гумусовыми горизонтами (0,15–0,25 м) и низким содержанием гумуса (1,6–2,3%) в пахотном слое. Реакция почвенного раствора слабощелочная (рН – 7,0–8,3). В рамках двухфакторного опыта изучались три режима орошения с поддержанием предполивного порога влажности почвы на уровне 80% НВ: вариант А1 – с фазы цветения, А2 – с фазы бутонизации, А3 – с фазы всходов, а также четыре дозы минеральных удобрений расчетно на получение уровня урожая: N40P50K0– 20 т/га, N100P100K70 – 30 т/га, N155P150K180– 40 т/га и N210P200K290 – 50 т/га. Для поддержания порога предполивной влажности почвы 70% НВ в период от посадки до всходов требовалось провести 1–2 полива, в период от посадки до бутонизации – от 1 до 3 поливов, в период от посадки до начала цветения – от 2 до 5 с поливной нормой 160 м3/га. Для поддержания порога предполивной влажности почвы 80% НВ с фазы всходов необходимо провести от 8 до 20 поливов, с начала фазы бутонизации – от 7 до 18 поливов, с начала фазы цветения – от 6 до 15 поливов по 130 м3/га. Суммарное водопотребление картофеля при сочетании факторов, обеспечивающих формирование урожайности до 50 т/га зрелых клубней, составляло 3470–3590 м3/га воды. Период вегетации от посадки до начала фазы сбора продукции возрастал с 91–97 суток при внесении удобрений дозой N40P50K0 и поддержании предполивного уровня влажности почвы 80% НВ с начала фазы цветения до 100–108 суток при внесении удобрений дозой N210P200K290и поддержании предполивного уровня влажности почвы 80% НВ с фазы всходов. The organization of effective industrial production of potatoes is one of the urgent tasks of the modern Russian agro-industrial complex. The purpose of the research is to optimize irrigation regimes and mineral nutrition when growing potatoes using drip irrigation. Studies of the influence of water availability and the nutrient regime of the soil on the growth, development, water consumption and yield of potatoes when watering with drip irrigation systems were carried out in 2008–2010 on light chestnut soils of the SEC Prestige of the Leninsky district of the Volgograd region. The soils of the subzone are characterized by low-power humus horizons of 0.15–0.25 m and a low humus content (1.6–2.3%) in the arable layer. The reaction of the soil solution is slightly alkaline (pH – 7.0–8.3). As part of a two-factor experiment, three irrigation regimes were studied with maintaining the pre-irrigation threshold of soil moisture at 80% NWC: option A1 – from the flowering phase, A2 – from the budding phase, A3 – from the germination phase, as well as four doses of mineral fertilizers calculated to obtain the yield level: N40P50K0– 20 t/ha, N100P100K70 – 30 t/ha, N155P150K180– 40 t/ha and N210P200K290 – 50 t/ha. To maintain the threshold of pre-watering soil moisture of 70% NWC in the period from planting to germination, 1–2 watering was required, in the period from planting to budding – from 1 to 3 watering, in the period from planting to the beginning of flowering – from 2 to 5 with a watering rate of 160 m3/ha. To maintain the threshold of pre-watering soil moisture of 80% NWC from the germination phase, it is necessary to carry out from 8 to 20 watering, from the beginning of the budding phase – from 7 to 18 watering, from the beginning of the flowering phase – from 6 to 15 watering of 130 m3/ha. The total water consumption of potatoes with a combination of factors that ensure the formation of a yield of up to 50 t/ha of mature tubers was 3470–3590 m3/ha of water. The vegetation period from planting to the beginning of the harvest phase increased from 91–97 days when applying fertilizers with a dose of N40P50K0and maintaining a pre-watering soil moisture level of 80% NWC from the beginning of the flowering phase to 100–108 days when applying fertilizers with a dose of N210P200K290 and maintaining a pre-watering soil moisture level of 80% NWC from the germination phase.

Weed Research ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 490-500
Author(s):  
W Kaczmarek‐Derda ◽  
M Helgheim ◽  
J Netland ◽  
H Riley ◽  
K Wærnhus ◽  
...  

1982 ◽  
Vol 60 (12) ◽  
pp. 2518-2529 ◽  
Author(s):  
Christopher Walker ◽  
Carl W. Mize ◽  
Harold S. McNabb Jr.

Two different sites in central Iowa were planted with hybrid poplars and subsequently sampled over a growing season for spores of endogonaceous fungi. At one of the sites, the effects of plowing and herbicide treatment on spore numbers also were examined. Ten species of fungi in the genera Acaulospora, Gigaspora, and Glomus were recorded at the first site. The second location yielded 12 species from the same genera. In both sites, the distribution of spores was highly variable. The poplars rarely became endomycorrhizal and had no effect on spore populations during the experimental period. Changes in spore populations were correlated with soil-moisture level. Evidence was found for some depression of spore production caused by plowing and herbicide treatment. The conclusion was drawn that small samples with but few replicates may not adequately represent populations of endogonaceous spores.


In the current condition, it is difficult to increase plant development and reduce expenses in agricultural sectors; nevertheless, an advanced thought leads to the use of an automated model that introduces automation in the irrigation system, which can aid in improved water and human resources management. An automated model has been developed using sensors and microcontroller technology, to make the most efficient use of water supply for irrigation. A soil moisture content detector is inserted into the soil of the crops, and an ultrasonic sensor is placed above the soil of the crops to measure the water level after irrigation has begun. A C++ program with threshold values for the moisture sensor was used to start the system in the crop field depending on the soil moisture level, and an ultrasonic sensor was used to control the water in the crop field. The Arduino UNO board is a microcontroller inbuilt of Atmel in the mega AVR family (ATMega328) and the sensors were used to lead the model in turning ON/OFF. A microcontroller was included in this model to run the program by receiving sensor input signals and converting them to soil water content and water level values in the crop field. The microcontroller began by receiving input values, which resulted in an output instructing the relay to turn on the groundwater pump. An LCD screen has also been interfaced with the microcontroller to show the percentage of moisture in the soil, field water level, and pump condition. When the soil moisture level reaches 99 percent and the water level reaches 6 cm after 2.5 and 4 minutes, respectively, the pump is turned off. This model, according to the study, might save water, time, and reduce human effort.


Sign in / Sign up

Export Citation Format

Share Document