scholarly journals Investigation of the ecological component of the urban environment quality based on the available spatial data

Author(s):  
A.A. Gosteva ◽  
S.P. Ilyina ◽  
A.K. Matuzko

The city is a complex system in which all components of the ecosystem interact with each other. In the course of the constant collection of information about the ecological situation, significant amounts of data are accumulated, the combination of which in a single information space provides new opportunities for obtaining new knowledge about the study area. The paper presents a study of the ecological component of the urban environment quality on the example of Krasnoyarsk city using open spatial data. Since one of the main factors for the assessment is the natural and ecological situation in the city, the following quality indicators were selected: the nature of thermal anomalies, air and land surface temperature, relief, number of storeys of residential and industrial buildings, concentration of suspended particles. The data on the land surface temperature were prepared using the Landsat-8 satellite data from 2013 to 2020, cloudless scenes were selected during the snowless period, which amounts to 30 scenes per city territory. The Open Street Map database was used to determine the number of storeys and types of all city structures. To achieve the goals, the authors selected the necessary vector layers for analyzing the urban environment, carried out a search and download of data on the air temperature and the land surface temperature, organized a single information space for geoinformation analysis across the Krasnoyarsk city. As a result of the geoinformation analysis, the search for relationships between objects was carried out, a comparison of data on one indicator from different monitoring sources was made. A vector polygonal layer has been created from small segments on the territory of the city that are more homogeneous in terms of buildings and relief features to search for relationships. Sets of layers where seasonal thermal urban anomalies are displayed have been created, the ratio of stable elevated temperatures to local climatic zones has been found, and existing sources have been evaluated regarding assessment of atmospheric air in relation to stable heat islands.

2020 ◽  
Author(s):  
Mikias Biazen Molla

Abstract This investigation was conducted for the estimation of the temporal land surface temperature value using thermal remote sensing of Landsat-8 (OLI) Data in Hawassa City Administration, Ethiopia. Satellite datasets of Landsat-7 (ETM+) for 22nd March 2002 and Landsat-8 (OLI) of 22nd March 2019 were taken for this study. Different algorisms were used to estimate the Normalized Difference Vegetation Index threshold from the Red and Near-Infrared band and the ground earth's surface emissivity esteem is legitimately recovered from the thermal infrared by coordinating with the outcome got from MODIS information. The land use land cover map of the city was prepared with better accuracy using the on-screen classification technique. The spatial distribution of surface temperature of the city range from 6.62°C to 22.54°C with a mean of 14.58°C and a standard deviation of 11.25 in the year of march 22nd 2002. The LST result derived from Landsat 8 for March 22nd, 2019, ranges from 11.97°C to 35.5°C with a mean of 23.735 °C and a standard deviation of 16.64. In both years the higher LST values correspond to built-up/settlement and bare/open lands of the city; whereas, lower LST values were observed in vegetation (trees/woodlot, shrubs, and grass forested) area. Urban expansion (built-up area roads, and another impervious surface), decline in vegetation levels due to deforestation and increasing population density. Increasing an evergreen tree and green space coverage, design and develop city parks and rehabilitate the existing degraded natural environments are among the recommended strategy to reduce the rate of LST.


2021 ◽  
Vol 333 ◽  
pp. 02008
Author(s):  
Anna Gosteva ◽  
Sofia Ilina ◽  
Aleksandra Matuzko

The replacement of the natural landscape by artificial environment has led to changes in the ecosystem and physical properties of the surface, such as heat storage capacity, and thermal conductivity properties. These changes increase the difficulty of heat transfer between urban areas and the environment. Land surface temperature (LST) images from various satellites are widely used to represent urban thermal environments, which are more convenient and intuitive way. LST maps provide full spatial coverage, which distinguishes them from air temperature data obtained from meteorological stations. The study of LST according to the Landsat 8 data of Krasnoyarsk city over the past 10 years allowed the authors to talk about the observation of constant seasonal urban heat islands (UHI). For a more detailed consideration of the urban environment, this study further considers urban landscapes, thus the idea of local climate zone (LCZ) is introduced to study these diverse impacts in addition to the traditional map of LST. And analysis of the interaction of UHI and LCZ.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farhan Khan ◽  
Bhumika Das ◽  
R. K. Mishra ◽  
Brijesh Patel

Abstract Remote sensing and Geographic Information System (GIS) are the most efficient tools for spatial data processing. This Spatial technique helps in generating data on natural resources such as land, forests, water, and their management with planning. The study focuses on assessing land change and surface temperature for Nagpur city, Maharashtra, for two decades. Land surface temperature and land use land cover (LULC) are determined using Landsat 8 and Landsat 7 imageries for the years 2000 and 2020. The supervised classification technique is used with a maximum likelihood algorithm for performing land classification. Four significant classes are determined for classification, i.e., barren land, built-up, vegetation and water bodies. Thermal bands are used for the calculation of land surface temperature. The land use land cover map reveals that the built-up and water bodies are increasing with a decrease in vegetation and barren land. Likewise, the land surface temperature map showed increased temperature for all classes from 2000 to 2020. The overall accuracy of classification is 98 %, and the kappa coefficients are 0.98 and 0.9 for the years 2000 and 2020, respectively. Due to urban sprawl and changes in land use patterns, the increase in land surface temperature is documented, which is a global issue that needs to be addressed.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jikang Wan ◽  
Min Zhu ◽  
Wei Ding

Many researchers have developed a variety of land surface temperature (LST) inversion algorithms based on satellite data. The main LST inversion algorithms include Radiative Transfer Equation (RTE), Single Channel (SC) algorithm, Mono Window (MW) algorithm, and Split Window (SW) algorithm. In this study, nine LST inversion algorithms were designed using Landsat-8 data and meteorological station data to test the inversion efficiency of different algorithms in different seasons and different locations. The results show that the error of various LST inversion algorithms will increase with the rise of LST. R2 of the inversion results of each LST algorithm and the measured data are all greater than 0.73°C in winter and about 0.5°C in the other seasons. By analyzing the stability of various algorithms inside and outside the city, it is found that the stability of each LST inversion algorithm inside the city is better than that outside the city. For the same surface features, the inversion temperature inside the city is 3–5°C higher than that outside the city. In addition, the sensitivity of various inversion algorithms to parameters was also analyzed. The influence of atmospheric transmittance on RTE, SC, and MW inversion algorithms is in logarithmic form. The effect of emissivity on each algorithm is linear. The influence of NDVI on the algorithms is mainly through the estimation of surface emissivity parameters to affect the inversion results. The effect of ascending radiation on SC (LST4 and LST5) is linear and on RTE (LST1 and LST2) is logarithmic. The effect of downslope radiation on SC and RTE is linear. The influence of atmospheric water vapor content on SW (LST7) is nonlinear.


2020 ◽  
Vol 223 ◽  
pp. 03011
Author(s):  
Elena A. Mamash ◽  
Igor A. Pestunov ◽  
Dmitri L. Chubarov

The paper discusses the applicability of Landsat 8 data for analyzing the land surface temperature distribution over the territory of Novosibirsk. The satellite data is compared with the data from ground meteorological stations. Using cloud-based systems and methods for processing time series of satellite data, a composite image of the temperature field for the territory of Novosibirsk is built; trends and anomalies in the temperature distribution in the urban area are studied. The results could be applied in urban development analysis and management of the city territory.


Author(s):  
A. Karimi ◽  
P. Pahlavani ◽  
B. Bigdeli

Due to urbanization and changes in the urban thermal environment and because the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. In this regard, due to the unique properties of spatial data, in this study, a geographically weighted regression (GWR) was used to identify effective spatial factors. The GWR is a suitable method for spatial regression issues, because it is compatible with two unique properties of spatial data, i.e. the spatial autocorrelation and spatial non-stationarity. In this study, the Landsat 8 satellite data on 18 August 2014 and Tehran land use data in 2006 was used for determining the land surface temperature and its effective factors. As a result, R<sup>2</sup> value of 0.765983 was obtained by taking the Gaussian kernel. The results showed that the industrial,military, transportation, and roads areas have the highest surface temperature.


2019 ◽  
Vol 23 (Suppl. 2) ◽  
pp. 615-621 ◽  
Author(s):  
Alexandra Matuzko ◽  
Oleg Yakubailik

Satellite data in the thermal infrared range are a powerful source of information for the analysis and determination of city urban area temperature anomalies. The article presents a technique for monitoring the land surface temperature on the basis of combination of ?Landsat 8? satellite thermal infrared data with PlanetScope satellite constellation high resolution data. Such combination of satellite data from several spacecrafts increase the detalization of temperature maps to the level of individual city blocks. Determination of the nature and boundaries of temperature anomalies will help to understand the causes of the unfavorable environmental situation in Krasnoyarsk, where, in addition to high industrial emissions, their influence and atmospheric processes, leading to the fact that impurities are delayed and concentrated over the city. The results shows that the temperature in the places of thermal anomalies is 5?-8? higher than the average land surface temperature of the city. Based on the results of the analysis of summer thermal multi-temporal space images, several thermal zones of different nature were outlined on the territory under consideration. This information can be used in planning the development of the city, the design of new urban neighborhoods.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


Sign in / Sign up

Export Citation Format

Share Document