scholarly journals Некоммутативная задача Ландау о фазовом пространстве при наличии минимальной длины

Author(s):  
F.A. Dossa ◽  
J.T. Koumagnon ◽  
J.V. Hounguevou ◽  
G.Y.H. Avossevou

The deformed Landau problem under a electromagnetic field is studied, where the Heisenberg algebra is constructed in detail in non-commutative phase space in the presence of a minimal length. We show that, in the presence of a minimal length, the momentum space is more practical to solve any problem of eigenvalues. From the Nikiforov-Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions are expressed in terms of hypergeometric functions. The fortuitous degeneration observed in the spectrum shows that the formulation of the minimal length complements that of the non-commutative phase space. Изучается деформированная задача Ландау в электромагнитном поле, в которой алгебра Гейзенберга подробно строится в некоммутативном фазовом пространстве при наличии минимальной длины. Мы показываем, что при наличии минимальной длины импульсное пространство более практично для решения любой проблемы собственных значений. С помощью метода Никифорова-Уварова получаются собственные значения энергии, а соответствующие волновые функции выражаются через гипергеометрические функции. Случайное вырождение, наблюдаемое в спектре, показывает, что формулировка минимальной длины дополняет формулировку некоммутативного фазового пространства.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
Akpan N. Ikot ◽  
S. Zarrinkamar

Minimal length Schrödinger equation is investigated for harmonic potential in the presence of magnetic field and illustrates the wave functions in the momentum space. The energy eigenvalues are reported and the corresponding wave functions are calculated in terms of hypergeometric functions.


2015 ◽  
Vol 93 (5) ◽  
pp. 542-548 ◽  
Author(s):  
Abdelmalek Boumali ◽  
Hassan Hassanabadi

Minimal length of a two-dimensional Dirac oscillator is investigated in the presence of a uniform magnetic field and illustrates the wave functions in the momentum space. The energy eigenvalues are found and the corresponding wave functions are calculated in terms of hypergeometric functions.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Bing-Qian Wang ◽  
Zheng-Wen Long ◽  
Chao-Yun Long ◽  
Shu-Rui Wu

Using the momentum space representation, we study the (2 + 1)-dimensional Duffin-Kemmer-Petiau oscillator for spin 0 particle under a magnetic field in the presence of a minimal length in the noncommutative space. The explicit form of energy eigenvalues is found, and the wave functions and the corresponding probability density are reported in terms of the Jacobi polynomials. Additionally, we also discuss the special cases and depict the corresponding numerical results.


2015 ◽  
Vol 70 (8) ◽  
pp. 619-627 ◽  
Author(s):  
Abdelmalek Boumali ◽  
Hassan Hassanabadi

AbstractWe consider a two-dimensional Dirac oscillator in the presence of a magnetic field in non-commutative phase space in the framework of relativistic quantum mechanics with minimal length. The problem in question is identified with a Poschl–Teller potential. The eigenvalues are found, and the corresponding wave functions are calculated in terms of hypergeometric functions.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
H. Panahi ◽  
A. Savadi

We study the (2 + 1)-dimensional Dirac oscillator in the noncommutative phase space and the energy eigenvalues and the corresponding wave functions of the system are obtained through the sl(2) algebraization. It is shown that the results are in good agreement with those obtained previously via a different method.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050195
Author(s):  
Soroush Zare ◽  
Hassan Hassanabadi ◽  
Marc de Montigny

We examine the behavior of spin-zero bosons in an elastic medium which possesses a screw dislocation, which is a type of topological defect. Therefore, we solve analytically the Duffin–Kemmer–Petiau (DKP) oscillator for bosons in the presence of a screw dislocation with two types of potential functions: Cornell and linear-plus-cubic potential functions. For each of these functions, we analyze the impact of screw dislocations by determining the wave functions and the energy eigenvalues with the help of the Nikiforov–Uvarov method and Heun function.


2014 ◽  
Vol 69 (3-4) ◽  
pp. 163-172 ◽  
Author(s):  
Altuğ Arda ◽  
Ramazan Sever

Approximate analytical solutions of the Dirac equation are obtained for the Hellmann potential, the Wei-Hua potential, and the Varshni potential with any k-value for the cases having the Dirac equation pseudospin and spin symmetries. Closed forms of the energy eigenvalue equations and the spinor wave functions are obtained by using the Nikiforov-Uvarov method and some tables are given to see the dependence of the energy eigenvalues on different quantum number pairs (n;κ).


2020 ◽  
Vol 29 (09) ◽  
pp. 2050067
Author(s):  
E. Yazdankish

The Yukawa potential has an important and significant rule in some branches of physics such as nuclear, plasma and solid state. However, there is no analytical solution for Schrödinger equation with this potential without approximation, therefore, other ways, such as numerical, perturbation, variation and so on, are taken to deal with this potential. In this work, the variation principle is taken to obtain some of its energy eigenvalues. In the arbitrary [Formula: see text]-state, the Yukawa potentials with centrifugal term are taken together as effective potential and then by choosing the wave functions of the Hulthen potential as trial function which are obtained in this work from the Nikiforov–Uvarov method, and then by applying the variation principle, the energy eigenvalues are obtained. After that, the result is compared with the former numerical result. The comparison shows excellent agreement between our result and the former numerical ones.


2011 ◽  
Vol 3 (3) ◽  
pp. 493-500 ◽  
Author(s):  
M. Eshghi

We study the relativistic equation of spin-1/2 particles under the hyperbolic potential and a Coulomb-like tensor potential. By using the generalized parametric of the Nikiforov-Uvarov method and the pseudo-spin symmetry, we obtain the energy eigenvalues equation and the corresponding unnormalized wave functions. Some numerical results are given, too.Keywords: Dirac equation; Tensor potential; Pseudo-spin symmetry; Nikiforov-Uvarov.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserveddoi:10.3329/jsr.v3i3.8071               J. Sci. Res. 3 (3), 503-510 (2011


2015 ◽  
Vol 70 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Babatunde J. Falaye ◽  
Sameer M. Ikhdair ◽  
Majid Hamzavi

AbstractIn this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng–Fan diatomic molecular potential by using the exact quantisation rule approach. The wave functions were expressed by hypergeometric functions via the functional analysis approach. An extension to the rotational–vibrational energy eigenvalues of some diatomic molecules is also presented. It is shown that the calculated energy levels are in good agreement with those obtained previously (Enℓ–D; shifted Deng–Fan).


Sign in / Sign up

Export Citation Format

Share Document