Leucine-rich α2-glycoprotein overexpression in the brain contribute to age-related memory impairment

Author(s):  
Madoka Nakajima ◽  
Ritsuko Inoue
2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 16
Author(s):  
James David Adams

A three-part mechanism is proposed for the induction of Alzheimer’s disease: (1) decreased blood lactic acid; (2) increased blood ceramide and adipokines; (3) decreased blood folic acid. The age-related nature of these mechanisms comes from age-associated decreased muscle mass, increased visceral fat and changes in diet. This mechanism also explains why many people do not develop Alzheimer’s disease. Simple changes in lifestyle and diet can prevent Alzheimer’s disease. Alzheimer’s disease is caused by a cascade of events that culminates in damage to the blood–brain barrier and damage to neurons. The blood–brain barrier keeps toxic molecules out of the brain and retains essential molecules in the brain. Lactic acid is a nutrient to the brain and is produced by exercise. Damage to endothelial cells and pericytes by inadequate lactic acid leads to blood–brain barrier damage and brain damage. Inadequate folate intake and oxidative stress induced by activation of transient receptor potential cation channels and endothelial nitric oxide synthase damage the blood–brain barrier. NAD depletion due to inadequate intake of nicotinamide and alterations in the kynurenine pathway damages neurons. Changes in microRNA levels may be the terminal events that cause neuronal death leading to Alzheimer’s disease. A new mechanism of Alzheimer’s disease induction is presented involving lactic acid, ceramide, IL-1β, tumor necrosis factor α, folate, nicotinamide, kynurenine metabolites and microRNA.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-740
Author(s):  
Gerard Karsenty

Abstract We hypothesized that bone may secrete hormones that regulate energy metabolism and reproduction. Testing this hypothesis revealed that the osteoblast-specific secreted protein osteocalcin is a hormone regulating glucose homeostasis and male fertility by signaling through a GPCR, Gprc6a, expressed in pancreatic β bells and Leydig cells of the testes. The systematic exploration of osteocalcin biology, revealed that it regulates an unexpectedly large spectrum of physiological functions in the brain and peripheral organs and that it has most features of an antigeromic molecule. As will be presented at the meeting, this body of work suggests that harnessing osteocalcin for therapeutic purposes may be beneficial in the treatment of age-related diseases such as depression, age-related memory loss and the decline in muscle function seen in sarcopenia.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rahul Basu ◽  
Vinod Nair ◽  
Clayton W. Winkler ◽  
Tyson A. Woods ◽  
Iain D. C. Fraser ◽  
...  

Abstract Background A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6–8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. Methods To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. Results BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. Conclusions These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


1997 ◽  
Vol 93 (3) ◽  
pp. 233-240 ◽  
Author(s):  
M. Ueno ◽  
Ichiro Akiguchi ◽  
Masanori Hosokawa ◽  
Masahiko Shinnou ◽  
Haruhiko Sakamoto ◽  
...  

2018 ◽  
Vol 38 (49) ◽  
pp. 10467-10478 ◽  
Author(s):  
Sarah E. Motley ◽  
Yael S. Grossman ◽  
William G.M. Janssen ◽  
Mark G. Baxter ◽  
Peter R. Rapp ◽  
...  

Author(s):  
Jake Kurczek ◽  
Natalie Vanderveen ◽  
Melissa C. Duff

There is a long history of research linking the various forms of memory to different aspects of language. Clinically, we see this memory-language connection in the prevalence of language and communication deficits in populations that have concomitant impairments in memory and learning. In this article, we provide an overview of how the demands of language use and processing are supported by multiple memory systems in the brain, including working memory, declarative memory and nondeclarative memory, and how disruptions in different forms of memory may affect language. While not an exhaustive review of the literature, special attention is paid to populations who speech-language pathologists (SLPs) routinely serve. The goal of this review is to provide a resource for clinicians working with clients with disorders in memory and learning in helping to understand and anticipate the range of disruptions in language and communication that can arise as a consequence of memory impairment. We also hope this is a catalyst for more research on the contribution of multiple memory systems to language and communication.


Sign in / Sign up

Export Citation Format

Share Document