Multiple sclerosis associated cytotoxic CD4+ T cells escape regulatory T cell mediated suppression

Author(s):  
Bieke Broux ◽  
Cindy Hoeks
Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 634 ◽  
Author(s):  
Sophie Buhelt ◽  
Helle Bach Søndergaard ◽  
Annette Oturai ◽  
Henrik Ullum ◽  
Marina Rode von Essen ◽  
...  

Single nucleotide polymorphisms (SNPs) in or near the IL2RA gene, that encodes the interleukin-2 (IL-2) receptor α (CD25), are associated with increased risk of immune-mediated diseases including multiple sclerosis (MS). We investigated how the MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with CD25 expression on T cells ex vivo by multiparameter flow cytometry in paired genotype-selected healthy controls. We observed that MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with expression of CD25 in CD4+ but not CD8+ T cells. In CD4+ T cells, carriers of the risk genotype had a reduced frequency of CD25+ TFH1 cells (p = 0.001) and an increased frequency of CD25+ recent thymic emigrant cells (p = 0.006). Furthermore, carriers of the risk genotype had a reduced surface expression of CD25 in post-thymic expanded CD4+ T cells (CD31−CD45RA+), CD39+ TReg cells and in several non-follicular memory subsets. Our study found novel associations of MS-associated IL2RA SNPs on expression of CD25 in CD4+ T cell subsets. Insight into the associations of MS-associated IL2RA SNPs, as these new findings provide, offers a better understanding of CD25 variation in the immune system and can lead to new insights into how MS-associated SNPs contribute to development of MS.


2021 ◽  
Author(s):  
Chiara Cappelletti ◽  
Anna Maria Eriksson ◽  
Ina Skaara Brorson ◽  
Ingvild S. Leikfoss ◽  
Oda Glomstad Kråbøl ◽  
...  

Abstract Background: Multiple sclerosis (MS) is an autoimmune, neurodegenerative disorder with a strong genetic component that acts in a complex interaction with environmental factors for disease development. CD4 + T cells are pivotal players in MS pathogenesis, where peripherally activated T cells migrate to the central nervous system leading to demyelination and axonal degeneration. Through a proteomic approach, we aim at identifying dysregulated pathways in activated T cells from MS patients as compared to healthy controls. Methods: CD4 + T cells were purified from peripheral blood from MS patients and healthy controls by magnetic separation. Cells were left unstimulated or stimulated in vitro through the TCR and costimulatory CD28 receptor for 24 hours prior to sampling. Electrospray liquid chromatographytandem mass spectrometry was used to measure protein abundances. Results: Upon T cell activation the abundance of 1,801 proteins was changed. Among these proteins, we observed an enrichment of proteins expressed by MS-susceptibility genes. When comparing protein abundances in T cell samples from healthy controls and MS patients, 18 and 33 proteins were differentially expressed in unstimulated and stimulated CD4 + T cells, respectively. Moreover, 353 and 304 proteins were identified as proteins exclusively induced upon T cell activation in healthy controls and MS patients, respectively and dysregulation of the Nur77 pathway was observed only in samples from MS patients. Conclusions: Our study highlights the importance of CD4 + T cell activation for MS, as proteins that change in abundance upon T cell activation are enriched for proteins encoded by MS susceptibility genes. The results provide evidence for proteomic disturbances in T cell activation in MS, and pinpoint to dysregulation of the Nur77 pathway, a biological pathway known to limit aberrant effector T cell responses.


2013 ◽  
Vol 190 (10) ◽  
pp. 4965-4970 ◽  
Author(s):  
Alexander Schwarz ◽  
Marijana Schumacher ◽  
Daniel Pfaff ◽  
Kai Schumacher ◽  
Sven Jarius ◽  
...  

2013 ◽  
Vol 190 (10) ◽  
pp. 5057-5064 ◽  
Author(s):  
Angela X. Zhou ◽  
Lina Kozhaya ◽  
Hodaka Fujii ◽  
Derya Unutmaz

Sign in / Sign up

Export Citation Format

Share Document