Targeting conserved RNA secondary structure motifs in the influenza A virus strains using siRNAs

Author(s):  
Julita Piasecka
2016 ◽  
Vol 9 (1) ◽  
Author(s):  
A. V. Vasin ◽  
A. V. Petrova ◽  
V. V. Egorov ◽  
M. A. Plotnikova ◽  
S. A. Klotchenko ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 627-642 ◽  
Author(s):  
Julita Piasecka ◽  
Elzbieta Lenartowicz ◽  
Marta Soszynska-Jozwiak ◽  
Barbara Szutkowska ◽  
Ryszard Kierzek ◽  
...  

BIOPHYSICS ◽  
2020 ◽  
Vol 65 (2) ◽  
pp. 222-224
Author(s):  
G. S. Onkhonova ◽  
P. Yu. Torzhkova ◽  
V. Yu. Marchenko ◽  
S. V. Svyatchenko ◽  
A. S. Gudymo ◽  
...  

1944 ◽  
Vol 79 (6) ◽  
pp. 633-647 ◽  
Author(s):  
William F. Friedewald

A study of the PR8, Christie, Talmey, W.S., and swine strains of influenza A virus by means of antibody absorption tests revealed the following findings: 1. Serum antibody could be specifically absorbed with allantoic fluid containing influenza virus or, more effectively, with concentrated suspensions of virus obtained from allantoic fluid by high-speed centrifugation or by the red cell adsorption and elution technique. Normal allantoic fluid, or the centrifugalized sediment therefrom, failed to absorb antibodies. Influenza B virus (Lee) caused no detectable absorption of antibody from antisera directed against influenza A virus strains, but it specifically absorbed antibody from Lee antisera. 2. The neutralizing, agglutination-inhibiting, and complement-fixing anti-bodies in ferret antisera were completely absorbed only by the homologous virus strain, even though 2 absorptions were carried out with large amounts of heterologous virus strains. 3. PR8 virus appeared to have the broadest range of specific antigenic components for it completely absorbed the heterologous antibodies in Christie and W.S. antisera and left only those antibodies which reacted with the respective homologous strains. The other virus strains (Christie, Talmey, W.S., swine) were more specific in the absorption of heterologous antibodies and completely removed only those antibodies which reacted with the absorbing virus. 4. The absorption tests revealed a higher degree of specificity and individuality of the virus strains than the various cross reactions previously reported. The strain specificity of PR8 virus was equally manifest in absorption tests with ferret sera and with human sera following vaccination. 5. The amount of homologous antibody remaining in a PR8 ferret serum after absorption with PR8 virus, obtained by the red cell adsorption and elution method, varied inversely as the concentration of virus used for absorption. A given concentration of virus, however, absorbed a greater percentage of neutralizing antibodies than either agglutination-inhibiting or complement-fixing antibodies.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 925 ◽  
Author(s):  
Marta Szabat ◽  
Dagny Lorent ◽  
Tomasz Czapik ◽  
Maria Tomaszewska ◽  
Elzbieta Kierzek ◽  
...  

Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA—vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Irina Baranovskaya ◽  
Mariia Sergeeva ◽  
Artem Fadeev ◽  
Renata Kadirova ◽  
Anna Ivanova ◽  
...  

AbstractRNA secondary structures play a key role in splicing, gene expression, microRNA biogenesis, RNA editing, and other biological processes. The importance of RNA structures has been demonstrated in the life cycle of RNA-containing viruses, including the influenza virus. At least two regions of conserved secondary structure in NS segment (+) RNA are predicted to vary among influenza virus strains with respect to thermodynamic stability; both fall in the NS1 open reading frame. The NS1 protein is involved in multiple virus-host interaction processes, and its main function is to inhibit the cellular immune response to viral infection. Using a reverse genetics approach, four influenza virus strains were constructed featuring mutations that have different effects on RNA secondary structure. Growth curve experiments and ELISA data show that, at least in the first viral replication cycle, mutations G123A and A132G affecting RNA structure in the (82–148) NS RNA region influence NS1 protein expression.


2009 ◽  
Vol 387 (2) ◽  
pp. 405-408 ◽  
Author(s):  
Yonghui Zhang ◽  
Xiaojing Lin ◽  
Fengwei Zhang ◽  
Jia Wu ◽  
Wenjie Tan ◽  
...  

2018 ◽  
Vol 6 (12) ◽  
Author(s):  
Manabu Nemoto ◽  
Takashi Yamanaka ◽  
Hiroshi Bannai ◽  
Koji Tsujimura ◽  
Hiroshi Kokado

ABSTRACT We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations.


Sign in / Sign up

Export Citation Format

Share Document