Equivariant geometric learning for digital rock physics. Part I: Estimating formation factor and effective permeability tensors with limited data

Author(s):  
Chen Cai ◽  
Nikolaos Napoleon Vlassis ◽  
Lucas Magee ◽  
Ran Ma ◽  
Zeyu Xiong ◽  
...  
2019 ◽  
Author(s):  
Mohammed Ali Garba ◽  
Stephanie Vialle ◽  
Mahyar Madadi ◽  
Boris Gurevich ◽  
Maxim Lebedev

Abstract. Electrical properties of rocks are important parameters for well-log and reservoir interpretation. Laboratory measurements of such properties are time-consuming, difficult, and are impossible in some cases. Being able to compute them from 3-D images of small samples will allow generating massive data in a short time, opening new avenues in applied and fundamental science. To become a reliable method, the accuracy of this technology needs to be tested. In this study, we developed a comprehensive and robust workflow with clean sand from two beaches. Electrical conductivities at 1 kHz were first carefully measured in the laboratory. A range of porosities spanning from a minimum of 0.26 to 0.33 to a maximum of 0.39 to 0.44, depending on the samples. Such range was achieved by compacting the samples in a way that reproduces natural packing of sand. Characteristic electrical formation factor versus porosity relationships were then obtain for each sand type. 3-D micro-computed tomography images of each sand sample from the experimental sand pack were acquired at different resolutions. Image processing was done using global thresholding method and up to 96 sub-samples of sizes from (200)3 to (700)3 voxels. After segmentation, the images were used to compute the effective electrical conductivity of the sub-cubes using a Finite Element electrostatic modelling. For the samples, a good agreement between laboratory measurements and computation from digital cores was found, if the sub-cube size REV is reached that is between (1300 μm)3 and (1820 μm)3, which, with an average grain size of 160 μm, is between 8 and 11 grains. Computed digital rock images of the clean sands have opened a way forward in getting the formation factor within a shortest possible time; laboratory calculations take five (5) to thirty-five (35) days as in the case of clean and shaly sands respectively, whereas, the digital tomography takes just three (3) to five (5) hours.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1505-1517
Author(s):  
Mohammed Ali Garba ◽  
Stephanie Vialle ◽  
Mahyar Madadi ◽  
Boris Gurevich ◽  
Maxim Lebedev

Abstract. Electrical properties of rocks are important parameters for well-log and reservoir interpretation. Laboratory measurements of such properties are time-consuming, difficult, and impossible in some cases. Being able to compute them from 3-D images of small samples will allow for the generation of a massive amount of data in a short time, opening new avenues in applied and fundamental science. To become a reliable method, the accuracy of this technology needs to be tested. In this study, we developed a comprehensive and robust workflow with clean sand from two beaches. Electrical conductivities at 1 kHz were first carefully measured in the laboratory. A range of porosities spanning from a minimum of 0.26–0.33 to a maximum of 0.39–0.44, depending on the samples, was obtained. Such a range was achieved by compacting the samples in a way that reproduces the natural packing of sand. Characteristic electrical formation factor versus porosity relationships were then obtained for each sand type. 3-D microcomputed tomography images of each sand sample from the experimental sand pack were acquired at different resolutions. Image processing was done using a global thresholding method and up to 96 subsamples of sizes from 2003 to 7003 voxels. After segmentation, the images were used to compute the effective electrical conductivity of the sub-cubes using finite-element electrostatic modelling. For the samples, a good agreement between laboratory measurements and computation from digital cores was found if a sub-cube size representative elemental volume (REV) was reached that is between 1300 and 1820 µm3, which, with an average grain size of 160 µm, is between 8 and 11 grains. Computed digital rock images of the clean sands have opened a way forward for obtaining the formation factor within the shortest possible time; laboratory calculations take 5 to 35 d as in the case of clean and shaly sands, respectively, whereas digital rock physics computation takes just 3 to 5 h.


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


Author(s):  
Mohammad Ebadi ◽  
Denis Orlov ◽  
Ivan Makhotin ◽  
Vladislav Krutko ◽  
Boris Belozerov ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 669
Author(s):  
Rongrong Lin ◽  
Leon Thomsen

With a detailed microscopic image of a rock sample, one can determine the corresponding 3-D grain geometry, forming a basis to calculate the elastic properties numerically. The issues which arise in such a calculation include those associated with image resolution, the registration of the digital numerical grid with the digital image, and grain anisotropy. Further, there is a need to validate the numerical calculation via experiment or theory. Because of the geometrical complexity of the rock, the best theoretical test employs the Hashin–Shtrikman result that, for an aggregate of two isotropic components with equal shear moduli, the bulk modulus is uniquely determined, independent of the micro-geometry. Similarly, for an aggregate of two isotropic components with a certain combination of elastic moduli defined herein, the Hashin–Shtrikman formulae give a unique result for the shear modulus, independent of the micro-geometry. For a porous, saturated rock, the solid incompressibility may be calculated via an “unjacketed” test, independent of the micro-geometry. Any numerical algorithm proposed for digital rock physics computation should be validated by successfully confirming these theoretical predictions. Using these tests, we validate a previously published staggered-grid finite difference damped time-stepping algorithm to calculate the static properties of digital rock models.


2022 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p><a></a>Each grid block in a 3D geological model requires a rock type that represents all physical and chemical properties of that block. The properties that classify rock types are lithology, permeability, and capillary pressure. Scientists and engineers determined these properties using conventional laboratory measurements, which embedded destructive methods to the sample or altered some of its properties (i.e., wettability, permeability, and porosity) because the measurements process includes sample crushing, fluid flow, or fluid saturation. Lately, Digital Rock Physics (DRT) has emerged to quantify these properties from micro-Computerized Tomography (uCT) and Magnetic Resonance Imaging (MRI) images. However, the literature did not attempt rock typing in a wholly digital context. We propose performing Digital Rock Typing (DRT) by: (1) integrating the latest DRP advances in a novel process that honors digital rock properties determination, while; (2) digitalizing the latest rock typing approaches in carbonate, and (3) introducing a novel carbonate rock typing process that utilizes computer vision capabilities to provide more insight about the heterogeneous carbonate rock texture.<br></p>


Sign in / Sign up

Export Citation Format

Share Document