scholarly journals Renewable Energy Sources Development Risk Analysis and Evaluation: the Case of Azerbaijan

2019 ◽  
Vol 5 (3) ◽  
pp. 11 ◽  
Author(s):  
Mahammad N. Nuriyev ◽  
Jeyhun Mammadov ◽  
Joshgun Mammadov

Steady increase in renewable energy production and supply allows gradually substitute environmentally harmful traditional energy systems. Developers of the renewable projects encounter various types of risks, inherent to these projects, and all these risks should be studied in advance and ways of their mitigation developed. In the paper risks related to the development of renewables in Azerbaijan are analyzed and assessed based on experts’ opinion study. Typical for the projects on renewable energy, nine risks and risk components likelihood and their impacts have been evaluated by experts and, based on their opinion, risk levels are calculated, and a risk profile is constructed. In general, risks are sufficiently different. However, energy policy-related, grid access and financial risks are significantly influential and require more attention.

2021 ◽  
Vol 11 (6) ◽  
pp. 2770
Author(s):  
Anna Stoppato ◽  
Alberto Benato ◽  
Francesco De Vanna

The aim of this study is to assess the environmental impact of storage systems integrated with energy plants powered by renewable sources. Stationary storage systems proved to be a valid solution for regulating networks, supporting frequency, and managing peaks in electricity supply and demand. Recently, their coupling with renewable energy sources has been considered a strategic means of exploiting their high potential since it permits them to overcome their intrinsic uncertainty. Therefore, the storage systems integration with distributed generation can improve the performance of the networks and decrease the costs associated with energy production. However, a question remains regarding the overall environmental sustainability of the final energy production. Focusing on electrochemical accumulators, the problems mainly concern the use of heavy metals and/or impacting chemical components of storage at the center of environmental hazard debates. In this paper, an environmental assessment from a life-cycle perspective of the hybrid energy systems powered by fossil and renewable sources located on two non-interconnected minor islands is presented. Existing configurations are compared with new ones obtained with the addition of batteries for the exploitation of renewable energy. The results show that, for batteries, the assembly phase, including raw material extraction, transport, and assembly, accounts for about 40% of the total, while the remaining part is related to end-of-life processes. The reuse and recycling of the materials have a positive effect on overall impacts. The results also show that the overall impact is strongly related to the actual energy mix of the place where batteries are installed, even if it is usually lower than that of the solution without the batteries. The importance of a proper definition of the functional unit in the analysis is also emphasized in this work.


2017 ◽  
Author(s):  
Gagee Raut ◽  
Navid Goudarzi

Hydrogen can be produced from various primary resources by using different processes. The full benefits of hydrogen production can be obtained when it is produced from renewable energy resources. Among these emerging renewable energy resources, marine and hydrokinetic (MHK) energy systems lower variability in the energy production. Also, more than 50% of the total US population resides near water bodies. In this paper, a brief review of renewable energy-based hydrogen production systems is provided, the emission level of both conventional and renewable energy sources for producing the same amount of hydrogen are compared using GREET model, and research needs for further MHK-based hydrogen production systems are discussed. The results showed the significant emission reductions obtained from renewable-based hydrogen production systems. Moreover, the study showed the potential of producing the same amount of hydrogen with less resource quantity of wave energy compared to that from other renewables such as solar energy.


Author(s):  
M. A. Ancona ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
B. Di Pietra

In the next years energy grids are expected to become increasingly complex, due to the integration between traditional generators (operating with fossil fuels, especially natural gas), renewable energy production systems and storage devices. Furthermore, the increase of installed distributed generation systems is posing new issues for the existing grids. The integration involves both electric grids and thermal networks, such as district heating networks. In this scenario, it is fundamental to optimize the production mix and the operation of each system, in order to maximize the renewable energies exploitation, minimize the economic costs (in particular the fossil fuel consumption) and the environmental impact. The aim of this paper is the analysis of different solutions in terms of energy generation mix, in order to define the optimal configuration for a given network. With this purpose, in this study a real district heating network served by a combined heat and power unit and four boilers has been considered. The current mode of operation of the selected network has been simulated, in order to individuate eventual criticism and/or improvement possibility. On the basis of the obtained results, several scenarios have been developed by considering the addition of thermal or electric energy production systems from renewable energy sources and/or heat pumps. For a given scenario, a whole year of operation has been simulated with an in-house developed software, called EGO (Energy Grid Optimizer), based on genetic algorithms and able to define the load distribution of a number of energy systems operating into an energy grid, with the aim to minimize the total cost of the energy production. Further considered constraints have been the avoiding of thermal dissipations and the minimization of the electric energy sale to the national grid (in order to increase the grid stability). The carried out analysis has allowed to evaluate the yearly fuel consumption, the yearly electric energy sold to the network and the yearly electric energy purchased from the network, for each of the developed configurations. In this study the obtained results have been discussed in order to compare the proposed scenarios and to define an optimal solution, which enables to reduce the yearly operation costs of the production plant.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 499
Author(s):  
Sebastian Klaudiusz Tomczak ◽  
Anna Skowrońska-Szmer ◽  
Jan Jakub Szczygielski

In an era of increasing energy production from renewable sources, the demand for components for renewable energy systems has dramatically increased. Consequently, managers and investors are interested in knowing whether a company associated with the semiconductor and related device manufacturing sector, especially the photovoltaic (PV) systems manufacturers, is a money-making business. We apply a new approach that extends prior research by applying decision trees (DTs) to identify ratios (i.e., indicators), which discriminate between companies within the sector that do (designated as “green”) and do not (“red”) produce elements of PV systems. Our results indicate that on the basis of selected ratios, green companies can be distinguished from the red companies without an in-depth analysis of the product portfolio. We also find that green companies, especially operating in China are characterized by lower financial performance, thus providing a negative (and unexpected) answer to the question posed in the title.


Author(s):  
Jishu Mary Gomez ◽  
Prabhakar Karthikeyan Shanmugam

Background & Objectives: The global power system is in a state of continuous evolution, incorporating more and more renewable energy systems. The converter-based systems are void of inherent inertia control behavior and are unable to curb minor frequency deviations. The traditional power system, on the other hand, is made up majorly of synchronous generators that have their inertia and governor response for frequency control. For improved inertial and primary frequency response, the existing frequency control methods need to be modified and an additional power reserve is to be maintained mandatorily for this purpose. Energy self-sufficient renewable distributed generator systems can be made possible through optimum active power control techniques. Also, when major global blackouts were analyzed for causes, solutions, and precautions, load shedding techniques were found to be a useful tool to prevent frequency collapse due to power imbalances. The pre-existing load shedding techniques were designed for traditional power systems and were tuned to eliminate low inertia generators as the first step to system stability restoration. To incorporate emerging energy possibilities, the changes in the mixed power system must be addressed and new frequency control capabilities of these systems must be researched. Discussion: In this paper, the power reserve control schemes that enable frequency regulation in the widely incorporated solar photovoltaic and wind turbine generating systems are discussed. Techniques for Under Frequency Load Shedding (UFLS) that can be effectively implemented in renewable energy enabled micro-grid environment for frequency regulation are also briefly discussed. The paper intends to study frequency control schemes and technologies that promote the development of self- sustaining micro-grids. Conclusion: The area of renewable energy research is fast emerging with immense scope for future developments. The comprehensive literature study confirms the possibilities of frequency and inertia response enhancement through optimum energy conservation and control of distributed energy systems.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5312-5316
Author(s):  
MIROSLAV RIMAR ◽  
◽  
MARCEL FEDA ◽  
ANDRII KULIKOV ◽  
MILAN ABRAHAM ◽  
...  

The purpose of currently contribution is to analyse and compare effectivity of cogeneration unit in each summer and winter season. The main idea of combined heat and energy production is to reduce usage of primary fuels and with that connected reduction of pollutions due to the integration of renewable energy sources and with regard to the natural environment. Presented contribution is dedicated on issue on the operation of a cogeneration unit integrated in central heating system.


2012 ◽  
pp. 73-77
Author(s):  
Orsolya Nagy

Due to the exhaustion of the fossile fuel reserves of the Earth, the increase of fossile fuel prices and the difficulties concerning stable fuel supply, the increase of electricity production from renewable energy sources has a special strategic importance. In this study, I am going to evaluate the circumstances of the production and use of renewable energy sources in Hungary and in the European Union. I present the Hungarian economic, energy policy-related and social circumstances which make it necessary to support renewable energy production. I am going to give an overview on the related EU strategies concerning the sector and the Hungarian development plan in this field. I pay particular attention to the examination of development opportunities and the R&D activities going on in this area in Hungary, as well as the efficiency of the means used to improve renewable energy use.


2014 ◽  
pp. 13-17
Author(s):  
Zoltán Balla

The renewable energy sources could be used in energy production, while no or only very slightly emit harmful substances to the environment. The solar, wind, hydropower, biomass and heat rational utilization of land contributes to greenhouse gas emissions.Renewable energy sources also reduces the dependence on fossil fuels, thus contributing to increase security of supply. The creation of local jobs to strengthen the area's population retaining ability.


Sign in / Sign up

Export Citation Format

Share Document