scholarly journals High performance information reconciliation for QKD with CASCADE

2015 ◽  
pp. 419-434
Author(s):  
Thomas Brochmann Pedersen ◽  
Mustafa Toyran

It is widely accepted in the quantum cryptography community that interactive information reconciliation protocols, such as cascade, are inefficient due to the communication overhead. Instead, non-interactive information reconciliation protocols based on i.e. LDPC codes or, more recently, polar codes have been proposed. In this work, we argue that interactive protocols should be taken into consideration in modern quantum key distribution systems. In particular, we demonstrate how to improve the performance of cascade by proper implementation and use. Our implementation of cascade reaches a throughput above 80 Mbps under realistic conditions. This is more than twice the throughput previously demonstrated in any information reconciliation protocol.

2018 ◽  
Vol 18 (9&10) ◽  
pp. 795-813
Author(s):  
Sunghoon Lee ◽  
Jooyoun Park ◽  
Jun Heo

Quantum key distribution (QKD) is a cryptographic system that generates an information-theoretically secure key shared by two legitimate parties. QKD consists of two parts: quantum and classical. The latter is referred to as classical post-processing (CPP). Information reconciliation is a part of CPP in which parties are given correlated variables and attempt to eliminate the discrepancies between them while disclosing a minimum amount of information. The elegant reconciliation protocol known as \emph{Cascade} was developed specifically for QKD in 1992 and has become the de-facto standard for all QKD implementations. However, the protocol is highly interactive. Thus, other protocols based on linear block codes such as Hamming codes, low-density parity-check (LDPC) codes, and polar codes have been researched. In particular, reconciliation using LDPC codes has been mainly studied because of its outstanding performance. Nevertheless, with small block size, the bit error rate performance of polar codes under successive-cancellation list (SCL) decoding with a cyclic redundancy check (CRC) is comparable to state-of-the-art turbo and LDPC codes. In this study, we demonstrate the use of polar codes to improve the performance of information reconciliation in a QKD system with small block size. The best decoder for polar codes, a CRC-aided SCL decoder, requires CRC-precoded messages. However, messages that are sifted keys in QKD are obtained arbitrarily as a result of a characteristic of the QKD protocol and cannot be CRC-precoded. We propose a method that allows arbitrarily obtained sifted keys to be CRC precoded by introducing a virtual string. Thus the best decoder can be used for reconciliation using polar codes and improves the efficiency of the protocol.


2015 ◽  
Vol 23 (17) ◽  
pp. 22190 ◽  
Author(s):  
Dakai Lin ◽  
Peng Huang ◽  
Duan Huang ◽  
Chao Wang ◽  
Jinye Peng ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1087 ◽  
Author(s):  
Kun Zhang ◽  
Xue-Qin Jiang ◽  
Yan Feng ◽  
Runhe Qiu ◽  
Enjian Bai

Due to the rapid development of quantum computing technology, encryption systems based on computational complexity are facing serious threats. Based on the fundamental theorem of quantum mechanics, continuous-variable quantum key distribution (CVQKD) has the property of physical absolute security and can effectively overcome the dependence of the current encryption system on the computational complexity. In this paper, we construct the spatially coupled (SC)-low-density parity-check (LDPC) codes and quasi-cyclic (QC)-LDPC codes by adopting the parity-check matrices of LDPC codes in the Advanced Television Systems Committee (ATSC) 3.0 standard as base matrices and introduce these codes for information reconciliation in the CVQKD system in order to improve the performance of reconciliation efficiency, and then make further improvements to final secret key rate and transmission distance. Simulation results show that the proposed LDPC codes can achieve reconciliation efficiency of higher than 0.96. Moreover, we can obtain a high final secret key rate and a long transmission distance through using our proposed LDPC codes for information reconciliation.


2020 ◽  
Vol 175 ◽  
pp. 05026
Author(s):  
Larisa Cherkesova ◽  
Denis Korochencev ◽  
Elena Revyakina ◽  
Nikolay Boldyrihin ◽  
Evgeniya Roshchina

This article deals with vulnerabilities of quantum cryptography systems and quantum key distribution. Solutions that exclude the possibility of quantum attacks on existing quantum key distribution systems are proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguo Xie ◽  
Han Wu ◽  
Chao Xia ◽  
Peng Ding ◽  
Helun Song ◽  
...  

AbstractSemiconductor superlattice secure key distribution (SSL-SKD) has been experimentally demonstrated to be a novel scheme to generate and agree on the identical key in unconditional security just by public channel. The error correction in the information reconciliation procedure is introduced to eliminate the inevitable differences of analog systems in SSL-SKD. Nevertheless, the error correction has been proved to be the performance bottleneck of information reconciliation for high computational complexity. Hence, it determines the final secure key throughput of SSL-SKD. In this paper, different frequently-used error correction codes, including BCH codes, LDPC codes, and Polar codes, are optimized separately to raise the performance, making them usable in practice. Firstly, we perform multi-threading to support multi-codeword decoding for BCH codes and Polar codes and updated value calculation for LDPC codes. Additionally, we construct lookup tables to reduce redundant calculations, such as logarithmic table and antilogarithmic table for finite field computation. Our experimental results reveal that our proposed optimization methods can significantly promote the efficiency of SSL-SKD, and three error correction codes can reach the throughput of Mbps and provide a minimum secure key rate of 99%.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Bang-Ying Tang ◽  
Bo Liu ◽  
Wan-Rong Yu ◽  
Chun-Qing Wu

AbstractInformation reconciliation (IR) corrects the errors in sifted keys and ensures the correctness of quantum key distribution (QKD) systems. Polar codes-based IR schemes can achieve high reconciliation efficiency; however, the incidental high frame error rate decreases the secure key rate of QKD systems. In this article, we propose a Shannon-limit approached (SLA) IR scheme, which mainly contains two phases: the forward reconciliation phase and the acknowledgment reconciliation phase. In the forward reconciliation phase, the sifted key is divided into sub-blocks and performed with the improved block checked successive cancellation list decoder of polar codes. Afterward, only the failure corrected sub-blocks perform the additional acknowledgment reconciliation phase, which decreases the frame error rate of the SLA IR scheme. The experimental results show that the overall failure probability of SLA IR scheme is decreased to $$10^{-8}$$ 10 - 8 and the efficiency is improved to 1.091 with the IR block length of 128 Mb. Furthermore, the efficiency of the proposed SLA IR scheme is 1.055, approached to Shannon limit, when the quantum bit error rate is 0.02 and the input scale of 1 Gb, which is hundred times larger than the state-of-the-art implemented polar codes-based IR schemes.


2014 ◽  
Vol 14 (3&4) ◽  
pp. 329-338
Author(s):  
Paul Jouguet ◽  
Sebastien Kunz-Jacques

We study the use of polar codes for both discrete and continuous variables Quantum Key Distribution (QKD). Although very large blocks must be used to obtain the efficiency required by quantum key distribution, and especially continuous variables quantum key distribution, their implementation on generic x86 Central Processing Units (CPUs) is practical. Thanks to recursive decoding, they exhibit excellent decoding speed, much higher than large, irregular Low Density Parity Check (LDPC) codes implemented on similar hardware, and competitive with implementations of the same codes on high-end Graphic Processing Units (GPUs).


2021 ◽  
Vol 25 (1) ◽  
pp. 79-83
Author(s):  
Evgeniy O. Kiktenko ◽  
Aleksei O. Malyshev ◽  
Aleksey K. Fedorov

2015 ◽  
pp. 453-477
Author(s):  
Jesus Martinez-Mateo ◽  
Christoph Pacher ◽  
Momtchil Peev ◽  
Alex Ciurana ◽  
Vicente Martin

Cascade is an information reconciliation protocol proposed in the context of secret key agreement in quantum cryptography. This protocol allows removing discrepancies in two partially correlated sequences that belong to distant parties, connected through a public noiseless channel. It is highly interactive, thus requiring a large number of channel communications between the parties to proceed and, although its efficiency is not optimal, it has become the de-facto standard for practical implementations of information reconciliation in quantum key distribution. The aim of this work is to analyze the performance of Cascade, to discuss its strengths, weaknesses and optimization possibilities, comparing with some of the modified versions that have been proposed in the literature. When looking at all design trade-offs, a new view emerges that allows to put forward a number of guidelines and propose near optimal parameters for the practical implementation of Cascade improving performance significantly in comparison with all previous proposals.


Sign in / Sign up

Export Citation Format

Share Document