scholarly journals Demystifying the information reconciliation protocol cascade

2015 ◽  
pp. 453-477
Author(s):  
Jesus Martinez-Mateo ◽  
Christoph Pacher ◽  
Momtchil Peev ◽  
Alex Ciurana ◽  
Vicente Martin

Cascade is an information reconciliation protocol proposed in the context of secret key agreement in quantum cryptography. This protocol allows removing discrepancies in two partially correlated sequences that belong to distant parties, connected through a public noiseless channel. It is highly interactive, thus requiring a large number of channel communications between the parties to proceed and, although its efficiency is not optimal, it has become the de-facto standard for practical implementations of information reconciliation in quantum key distribution. The aim of this work is to analyze the performance of Cascade, to discuss its strengths, weaknesses and optimization possibilities, comparing with some of the modified versions that have been proposed in the literature. When looking at all design trade-offs, a new view emerges that allows to put forward a number of guidelines and propose near optimal parameters for the practical implementation of Cascade improving performance significantly in comparison with all previous proposals.

2011 ◽  
Vol 11 (3&4) ◽  
pp. 226-238
Author(s):  
David Elkouss ◽  
Jesus Martinez-Mateo ◽  
Vicente Martin

Quantum key distribution (QKD) relies on quantum and classical procedures in order to achieve the growing of a secret random string ---the key--- known only to the two parties executing the protocol. Limited intrinsic efficiency of the protocol, imperfect devices and eavesdropping produce errors and information leakage from which the set of measured signals ---the raw key--- must be stripped in order to distill a final, information theoretically secure, key. The key distillation process is a classical one in which basis reconciliation, error correction and privacy amplification protocols are applied to the raw key. This cleaning process is known as information reconciliation and must be done in a fast and efficient way to avoid cramping the performance of the QKD system. Brassard and Salvail proposed a very simple and elegant protocol to reconcile keys in the secret-key agreement context, known as \textit{Cascade}, that has become the de-facto standard for all QKD practical implementations. However, it is highly interactive, requiring many communications between the legitimate parties and its efficiency is not optimal, imposing an early limit to the maximum tolerable error rate. In this paper we describe a low-density parity-check reconciliation protocol that improves significantly on these problems. The protocol exhibits better efficiency and limits the number of uses of the communications channel. It is also able to adapt to different error rates while remaining efficient, thus reaching longer distances or higher secure key rate for a given QKD system.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hua-Lei Yin ◽  
Zeng-Bing Chen

AbstractLong-distance quantum key distribution (QKD) has long time seriously relied on trusted relay or quantum repeater, which either has security threat or is far from practical implementation. Recently, a solution called twin-field (TF) QKD and its variants have been proposed to overcome this challenge. However, most security proofs are complicated, a majority of which could only ensure security against collective attacks. Until now, the full and simple security proof can only be provided with asymptotic resource assumption. Here, we provide a composable finite-key analysis for coherent-state-based TF-QKD with rigorous security proof against general attacks. Furthermore, we develop the optimal statistical fluctuation analysis method to significantly improve secret key rate in high-loss regime. The results show that coherent-state-based TF-QKD is practical and feasible, with the potential to apply over nearly one thousand kilometers.


Author(s):  
Zhengchun Zhou ◽  
Shanhua Zou ◽  
Yun Mao ◽  
Tongcheng Huang ◽  
Ying Guo

Establishing global high-rate secure communications is a potential application of continuous-variable quantum key distribution (CVQKD) but also challenging for long-distance transmissions in metropolitan areas. The discrete modulation(DM) can make up for the shortage of transmission distance that has a unique advantage against all side-channel attacks, however its further performance improvement requires source preparation in the presence of noise and loss. Here, we consider the effects of photon catalysis (PC) on the DM-involved source preparation for lengthening the maximal transmission distance of the CVQKD system. We address a zero-photon catalysis (ZPC)-based source preparation for enhancing the DM-CVQKD system. The statistical fluctuation due to the finite length of data is taken into account for the practical security analysis. Numerical simulations show that the ZPC-based DM-CVQKD system can not only achieve the extended maximal transmission distance, but also contributes to the reasonable increase of the secret key rate. This approach enables the DM-CVQKD to tolerate lower reconciliation efficiency, which may promote the practical implementation solutions compatible with classical optical communications using state-of-the-art technology.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1087 ◽  
Author(s):  
Kun Zhang ◽  
Xue-Qin Jiang ◽  
Yan Feng ◽  
Runhe Qiu ◽  
Enjian Bai

Due to the rapid development of quantum computing technology, encryption systems based on computational complexity are facing serious threats. Based on the fundamental theorem of quantum mechanics, continuous-variable quantum key distribution (CVQKD) has the property of physical absolute security and can effectively overcome the dependence of the current encryption system on the computational complexity. In this paper, we construct the spatially coupled (SC)-low-density parity-check (LDPC) codes and quasi-cyclic (QC)-LDPC codes by adopting the parity-check matrices of LDPC codes in the Advanced Television Systems Committee (ATSC) 3.0 standard as base matrices and introduce these codes for information reconciliation in the CVQKD system in order to improve the performance of reconciliation efficiency, and then make further improvements to final secret key rate and transmission distance. Simulation results show that the proposed LDPC codes can achieve reconciliation efficiency of higher than 0.96. Moreover, we can obtain a high final secret key rate and a long transmission distance through using our proposed LDPC codes for information reconciliation.


2011 ◽  
Vol 25 (08) ◽  
pp. 1061-1067
Author(s):  
WEI YANG ◽  
LIUSHENG HUANG ◽  
FANG SONG ◽  
QIYAN WANG

Secure key distribution is impossible in pure classical environment. Unconditional secure key distribution is available when quantum means are introduced, assisted by a classical communication channel. What is possible when a quantum key distribution scheme is without classical communication? We present a general model with this constraint and show that quantum key distribution without classical eavesdropping check is in principle impossible. For an adversary can always succeed in obtaining the secret key via a special case of man-in-the-middle attack, namely intercept-and-forward attack without any risk of being captured.


2015 ◽  
pp. 419-434
Author(s):  
Thomas Brochmann Pedersen ◽  
Mustafa Toyran

It is widely accepted in the quantum cryptography community that interactive information reconciliation protocols, such as cascade, are inefficient due to the communication overhead. Instead, non-interactive information reconciliation protocols based on i.e. LDPC codes or, more recently, polar codes have been proposed. In this work, we argue that interactive protocols should be taken into consideration in modern quantum key distribution systems. In particular, we demonstrate how to improve the performance of cascade by proper implementation and use. Our implementation of cascade reaches a throughput above 80 Mbps under realistic conditions. This is more than twice the throughput previously demonstrated in any information reconciliation protocol.


2021 ◽  
Vol 11 (20) ◽  
pp. 9560
Author(s):  
Yi-Fei Lu ◽  
Mu-Sheng Jiang ◽  
Yang Wang ◽  
Xiao-Xu Zhang ◽  
Fan Liu ◽  
...  

The twin-field quantum key distribution (TF-QKD) and its variants can overcome the fundamental rate-distance limit of QKD. However, their physical implementations with the side channels remain the subject of further research. We test the side channel of a type of external intensity modulation that applies a Mach–Zehnder-type electro-optical intensity modulator, which shows the distinguishability of the signal and decoy states in the frequency domain. Based on this security loophole, we propose a side-channel attack, named the passive frequency-shift attack, on the imperfect implementation of the sending or not-sending (SNS) TF-QKD protocol. We analyze the performance of the SNS protocol with the actively odd-parity pairing (AOPP) method under the side-channel attack by giving the formula of the upper bound of the real secret key rate and comparing it with the lower bound of the secret key rate under Alice and Bob’s estimation. The simulation results quantitatively show the effectiveness of the attack on the imperfect devices at a long distance. Our results emphasize the importance of practical security at the light source and might provide a valuable reference for device selection in the practical implementation of the SNS protocol.


Author(s):  
Hiroo Azuma ◽  
Masashi Ban

We investigate the security against the intercept/resend and translucent attacks on the quantum key distribution protocol based on the pre- and post-selection effect. In 2001, Bub proposed the quantum cryptography scheme, which was an application of the so-called mean king’s problem. We evaluate a probability that legitimate users cannot detect eavesdropper’s malicious acts for Bub’s protocol. We also estimate a probability that the eavesdropper guesses right at the random secret key one of the legitimate users tries to share with the other one. From rigorous mathematical and numerical analyses, we conclude that Bub’s protocol is weaker than the Bennett–Brassard protocol of 1984 (BB84) against both the intercept/resend and translucent attacks. Because Bub’s protocol uses a two-way quantum channel, the analyses of its security are tough to accomplish. We refer to their technical points accurately in the current paper. For example, we impose some constraints upon the eavesdropper’s strategies in order to let their degrees of freedom be small.


Sign in / Sign up

Export Citation Format

Share Document