scholarly journals Weight reduction for quantum codes

2017 ◽  
Vol 17 (15&16) ◽  
pp. 1307-1334
Author(s):  
Mathew B. Hastings

We present an algorithm that takes a CSS stabilizer code as input, and outputs another CSS stabilizer code such that the stabilizer generators all have weights O(1) and such that O(1) generators act on any given qubit. The number of logical qubits is unchanged by the procedure, while we give bounds on the increase in number of physical qubits and in the effect on distance and other code parameters, such as soundness (as a locally testable code) and “cosoundness” (defined later). Applications are discussed, including to codes from high-dimensional manifolds which have logarithmic weight stabilizers. Assuming a conjecture in geometry[11], this allows the construction of CSS stabilizer codes with generator weight O(1) and almost linear distance. Another application of the construction is to increasing the distance to X or Z errors, whichever is smaller, so that the two distances are equal.

2017 ◽  
Vol 17 (13&14) ◽  
pp. 1191-1205
Author(s):  
Mathew B. Hastings

We consider Majorana fermion stabilizer codes with small number of modes and distance. We give an upper bound on the number of logical qubits for distance 4 codes, and we construct Majorana fermion codes similar to the classical Hamming code that saturate this bound. We perform numerical studies and find other distance 4 and 6 codes that we conjecture have the largest possible number of logical qubits for the given number of physical Majorana modes. Some of these codes have more logical qubits than any Majorana fermion code derived from a qubit stabilizer code.


2020 ◽  
Vol 34 (08) ◽  
pp. 2050059 ◽  
Author(s):  
Duc Manh Nguyen ◽  
Sunghwan Kim

In this research, we propose a novel construction of quantum stabilizer code based on a binary formalism. First, from any binary vector of even length, we generate the parity-check matrix of the quantum code from a set composed of elements from this vector and its relations by shifts via subtraction and addition. We prove that the proposed matrices satisfy the condition constraint for the construction of quantum codes. Finally, we consider some constraint vectors which give us quantum stabilizer codes with various dimensions and a large minimum distance with code length from six to twelve digits.


2016 ◽  
Vol 16 (3&4) ◽  
pp. 237-250
Author(s):  
Yongsoo Hwang ◽  
Jun Heo

A graph state and a graph code respectively are defined based on a mathematical simple graph. In this work, we examine a relation between a graph state and a graph code both obtained from the same graph, and show that a graph state is a superposition of logical qubits of the related graph code. By using the relation, we first discuss that a local complementation which has been used for a graph state can be useful for searching locally equivalent stabilizer codes, and second provide a method to find a stabilizer group of a graph code.


2009 ◽  
Vol 9 (5&6) ◽  
pp. 487-499
Author(s):  
S.S. Bullock ◽  
D.P. O'Leary

In this paper, we study the complexity of Hamiltonians whose groundstate is a stabilizer code. We introduce various notions of $k$-locality of a stabilizer code, inherited from the associated stabilizer group. A choice of generators leads to a Hamiltonian with the code in its groundspace. We establish bounds on the locality of any other Hamiltonian whose groundspace contains such a code, whether or not its Pauli tensor summands commute. Our results provide insight into the cost of creating an energy gap for passive error correction and for adiabatic quantum computing. The results simplify in the cases of XZ-split codes such as Calderbank-Shor-Steane stabilizer codes and topologically-ordered stabilizer codes arising from surface cellulations.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 655 ◽  
Author(s):  
Duc Nguyen ◽  
Sunghwan Kim

In this paper, new conditions on parameters in difference sets are derived to satisfy symplectic inner product, and new constructions of quantum stabilizer codes are proposed from the conditions. The conversion of the difference sets into parity-check matrices is first explained. Then, the proposed code construction is composed of three steps, which are to choose the generators of quantum stabilizer code, to determine the quantum stabilizer groups, and to determine subspace codewords with large minimum distance. The quantum stabilizer codes with various length are also presented to explain the practicality of the code construction. The proposed design can be applied to quantum stabilizer code construction based on combinatorial design.


Author(s):  
Andreas Klappenecker ◽  
Pradeep Kiran Sarvepalli

Subsystem codes are a generalization of noiseless subsystems, decoherence-free subspaces and stabilizer codes. We generalize the quantum Singleton bound to q -linear subsystem codes. It follows that no subsystem code over a prime field can beat the quantum Singleton bound. On the other hand, we show the remarkable fact that there exist impure subsystem codes beating the quantum Hamming bound. A number of open problems concern the comparison in the performance of stabilizer and subsystem codes. One of the open problems suggested by Poulin's work asks whether a subsystem code can use fewer syndrome measurements than an optimal q -linear maximum distance separable stabilizer code while encoding the same number of qudits and having the same distance. We prove that linear subsystem codes cannot offer such an improvement under complete decoding.


2021 ◽  
Author(s):  
Vatsal Pramod Jha ◽  
Udaya Parampalli ◽  
Abhay Kumar Singh

<div>Stabilizer codes, introduced in [2], [3], have been a prominent example of quantum codes constructed via classical codes. The paper [3], introduces the stabilizer formalism for obtaining additive quantum codes of length n from Hermitian self-orthogonal codes of length n over GF(4). In the present work, we reinterpret the stabilizer formalism by considering binary codes over the symbol-pair metric (see [9]). Specifically, the present work constructs additive quantum codes of length n from certain binary codes of length n considered over the symbol-pair metric. We also present the Modified CSS Construction which is used to obtain quantum codes with parameters.</div>


2010 ◽  
Vol 10 (1&2) ◽  
pp. 41-59
Author(s):  
S. Beigi ◽  
P.W. Shor

Fault-tolerant quantum computation is a basic problem in quantum computation, and teleportation is one of the main techniques in this theory. Using teleportation on stabilizer codes, the most well-known quantum codes, Pauli gates and Clifford operators can be applied fault-tolerantly. Indeed, this technique can be generalized for an extended set of gates, the so called ${\mathcal{C}}_k$ hierarchy gates, introduced by Gottesman and Chuang (Nature, 402, 390-392). ${\mathcal{C}}_k$ gates are a generalization of Clifford operators, but our knowledge of these sets is not as rich as our knowledge of Clifford gates. Zeng et al. in (Phys. Rev. A 77, 042313) raise the question of the relation between ${\mathcal{C}}_k$ hierarchy and the set of semi-Clifford and generalized semi-Clifford operators. They conjecture that any ${\mathcal{C}}_k$ gate is a generalized semi-Clifford operator. In this paper, we prove this conjecture for $k=3$. Using the techniques that we develop, we obtain more insight on how to characterize ${\mathcal{C}}_3$ gates. Indeed, the more we understand ${\mathcal{C}}_3$, the more intuition we have on ${\mathcal{C}}_k$, $k\geq 4$, and then we have a way of attacking the conjecture for larger $k$.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 53 ◽  
Author(s):  
Christopher Chamberland ◽  
Michael E. Beverland

In this paper we introduce a general fault-tolerant quantum error correction protocol using flag circuits for measuring stabilizers of arbitrary distance codes. In addition to extending flag error correction beyond distance-three codes for the first time, our protocol also applies to a broader class of distance-three codes than was previously known. Flag circuits use extra ancilla qubits to signal when errors resulting fromvfaults in the circuit have weight greater thanv. The flag error correction protocol is applicable to stabilizer codes of arbitrary distance which satisfy a set of conditions and uses fewer qubits than other schemes such as Shor, Steane and Knill error correction. We give examples of infinite code families which satisfy these conditions and analyze the behaviour of distance-three and -five examples numerically. Requiring fewer resources than Shor error correction, flag error correction could potentially be used in low-overhead fault-tolerant error correction protocols using low density parity check quantum codes of large code length.


2004 ◽  
Vol 4 (2) ◽  
pp. 152-160
Author(s):  
A.A. Klappenecker ◽  
M. Rotteler

Clifford codes are a class of quantum error control codes that form a natural generalization of stabilizer codes. These codes were introduced in 1996 by Knill, but only a single Clifford code was known, which was not already a stabilizer code. We derive a necessary and sufficient condition that allows one to decide when a Clifford code is a stabilizer code, and compile a table of all true Clifford codes for error groups of small order.


Sign in / Sign up

Export Citation Format

Share Document