scholarly journals Security proof for quantum key recycling with noise

2019 ◽  
Vol 19 (11&12) ◽  
pp. 913-934
Author(s):  
Daan Leermakers ◽  
Boris Skoric

Quantum Key Recycling aims to re-use the keys employed in quantum encryption and quantum authentication schemes. QKR protocols can achieve better round complexity than Quantum Key Distribution. We consider a QKR protocol that works with qubits, as opposed to high-dimensional qudits. A security proof was given by Fehr and Salvail in the case where there is practically no noise. A high-rate scheme for the noisy case was proposed by \v{S}kori\'{c} and de Vries, based on eight-state encoding. However, a security proof was not given. In this paper we introduce a protocol modification and provide a security proof. The modified protocol has high rate not only for 8-state encoding, but also 6-state and BB84 encoding. Our proof is based on a bound on the trace distance between the real quantum state of the system and a state in which the keys are completely secure. It turns out that the rate is higher than suggested by previous results. Asymptotically the rate equals the rate of Quantum Key Distribution with one-way postprocessing.

2019 ◽  
Vol 4 (3) ◽  
pp. 035008 ◽  
Author(s):  
Nurul T Islam ◽  
Charles Ci Wen Lim ◽  
Clinton Cahall ◽  
Bing Qi ◽  
Jungsang Kim ◽  
...  

2014 ◽  
Vol 33 ◽  
pp. 1460370 ◽  
Author(s):  
Yi-Bo Zhao ◽  
Zhen-Qiang Yin

In the realistic quantum key distribution (QKD), Alice and Bob respectively get a quantum state from an unknown channel, whose dimension may be unknown. However, while discussing the security, sometime we need to know exact dimension, since current exponential de Finetti theorem, crucial to the information-theoretical security proof, is deeply related with the dimension and can only be applied to finite dimensional case. Here we address this problem in detail. We show that if POVM elements corresponding to Alice and Bob's measured results can be well described in a finite dimensional subspace with sufficiently small error, then dimensions of Alice and Bob's states can be almost regarded as finite. Since the security is well defined by the smooth entropy, which is continuous with the density matrix, the small error of state actually means small change of security. Then the security of unknown-dimensional system can be solved. Finally we prove that for heterodyne detection continuous variable QKD and differential phase shift QKD, the collective attack is optimal under the infinite key size case.


2016 ◽  
Vol 24 (19) ◽  
pp. 22159 ◽  
Author(s):  
Haize Bao ◽  
Wansu Bao ◽  
Yang Wang ◽  
Ruike Chen ◽  
Chun Zhou ◽  
...  

2020 ◽  
Vol 18 (06) ◽  
pp. 2050031
Author(s):  
Ali Mehri-Toonabi ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this work, we introduce a high-dimensional polarization-phase (PoP)-based quantum key distribution protocol, briefly named PoP[Formula: see text], where [Formula: see text] is the dimension of a hybrid quantum state including polarization and phase degrees of freedom of the same photon, and [Formula: see text] is the number of mutually unbiased bases. We present a detailed description of the PoP[Formula: see text] protocol as a special case, and evaluate its security against various individual and coherent eavesdropping strategies, and in each case, we compare it with the BB84 and the two-dimensional (TD)-PoP protocols. In all the strategies, the error threshold and the effective transmission rate of the PoP[Formula: see text] protocol are far greater than the other two protocols. Unlike most high-dimensional protocols, the simplicity of producing and detecting the qudits and the use of conventional components (such as traditional single-photon sources and quantum channels) are among the features of the PoP[Formula: see text] protocol.


Sign in / Sign up

Export Citation Format

Share Document