scholarly journals Elucidating morphological effects in membrane mineral fouling using real-time particle imaging and impedance spectroscopy

Author(s):  
Chidiebere S. Nnebuo ◽  
Denise Hambsch ◽  
Oded Nir

Mineral fouling is a major hindrance to high recovery effluent nanofiltration, with calcium phosphate (Ca-P) and calcium carbonate (CaCO3) the most prevalent mineral foulants. In this study, we used a novel combination of real-time in-line microscopy, electrical impedance spectroscopy (EIS), post SEM analysis, and filtration metrics (water flux and rejection) to study mineral fouling mechanisms of Ca-P and CaCO3 salts in synthetic effluent nanofiltration. We used nanofiltration (NF) polyelectrolyte multilayer (PEM) membranes, prepared by static layer-by-layer (LbL) coating of a cationic polymer - polydiallyl dimethylammonium chloride, and anionic polymer - poly styrenesulfonate (six bi-layer) on a polyethersulfone (PES) ultrafiltration (UF) membrane. Increasing permeate recovery over filtration time was simulated through additions of CaCl2 with NaHCO3 or NaH2PO4/Na2HPO4. Using the novel combination of methods, we delineated the mechanisms governing fouling development with time for both CaCO3 and Ca-P. For CaCO3, a transition from heterogeneous precipitation on the membrane surface (scaling) to particulate fouling due to bulk precipitation was identified. For Ca-P, a transition from fouling by amorphous particles to fouling by crystalline particles was identified; and this phase-change was captured in real-time images using an in-line microscope. We also found that for similar precipitation potentials measured by weight, Ca-P fouling was more detrimental to water flux (86% decrease) compared to CaCO3 (20% decrease) due to the voluminous amorphous phase. We established in-line microscopy as a new useful method to study mineral fouling, as it gives invaluable information on the suspended particles in real-time. Combining it with EIS gives complementary information on mineral accumulation on the membrane surface. Insight from this study and further use of these methods can guide future strategies towards higher effluent recovery by membrane filtration.

Author(s):  
Chyouhwu Brian Huang ◽  
Hung-Shyong Chen

Ultrafiltration (UF) is an important industrial operation and is found in the food industry, separation of oil-water emulsions, treatment effluents from the pulp and paper industry, and environmental protection systems. Despite being widely used in these areas, UF systems exhibit a limiting flux behavior caused by concentration polarization on the membrane surface. Concentration polarization can be severe in macromolecular solutions due to low diffusivity on membrane separation and both mechanical and chemical methods have been used to reduce this phenomenon. This study introduces a new mechanical method that improves the performance of membrane separation and decreases concentration polarization. It involves pulsing the feed flow discontinuously and based on our results, feed flow velocity and solution bypass/membrane filtration time ratio are two vital factors when it comes to improving permeate flux. The proposed method is expected to find wide application, particularly in the processing of macromolecular solution.


2015 ◽  
Vol 91 (6) ◽  
pp. 1755-1762 ◽  
Author(s):  
Enric Sarró ◽  
Martí Lecina ◽  
Andreu Fontova ◽  
Francesc Gòdia ◽  
Ramon Bragós ◽  
...  

2017 ◽  
Vol 160 ◽  
pp. 724-731
Author(s):  
Rafael R. da Silva ◽  
Sandro V. de Lima ◽  
Helinando P. de Oliveira ◽  
Celso P. de Melo ◽  
Isaac A.M. Frías ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2003
Author(s):  
Afrillia Fahrina ◽  
Nasrul Arahman ◽  
Sri Mulyati ◽  
Sri Aprilia ◽  
Normi Izati Mat Nawi ◽  
...  

Biofouling on the membrane surface leads to performance deficiencies in membrane filtration. In this study, the application of ginger extract as a bio-based additive to enhance membrane antibiofouling properties was investigated. The extract was dispersed in a dimethyl acetamide (DMAc) solvent together with polyvinylidene fluoride (PVDF) to enhance biofouling resistance of the resulting membrane due to its antibiotic property. The concentrations of the ginger extract in the dope solution were varied in the range of 0–0.1 wt %. The antibacterial property of the resulting membranes was assessed using the Kirby Bauer disc diffusion method. The results show an inhibition zone formed around the PVDF/ginger membrane against Escherichia coli and Staphylococcus aureus demonstrating the efficacy of the residual ginger extract in the membrane matrix to impose the antibiofouling property. The addition of the ginger extract also enhanced the hydrophilicity in the membrane surface by lowering the contact angle from 93° to 85°, which was in good agreement with the increase in the pure water flux of up to 62%.


2020 ◽  
Vol 412 (24) ◽  
pp. 6371-6380
Author(s):  
Claudia Caviglia ◽  
Francesca Garbarino ◽  
Chiara Canali ◽  
Fredrik Melander ◽  
Roberto Raiteri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document