scholarly journals Solvent controlled selective photocatalytic oxidation of benzyl alcohol over Ni@C/TiO2

Author(s):  
Song Zhenlong ◽  
Jianguo Liu ◽  
Qi Zhang

The oxidation of aromatic alcohols to produce carbonyl compounds is of great significance in fine chemical production. The traditional oxidation produces waste gas and pollutes the environment during the reaction. As a new field, photocatalysis has attracted people's attention because of its environmental friendliness. At present, there have been much research on TiO2, or noble metal modified TiO2 to catalyze alcohol oxidation, but the high cost is not conducive to large-scale production. Herein, a Ni@C/TiO2 catalyst was prepared by in-situ hydrothermal synthesis. This catalyst has a better oxidation effect on benzyl alcohol than Ni@C supported on TiO2 on the market and has a good catalytic effect on aromatic alcohols with different substituents. It is more interesting that the selectivity of the product can be adjusted by choosing different reaction solvents. The highly active catalyst with low cost and wide applicability has certain significance for the large-scale use of photocatalytic alcohol oxidation.

Author(s):  
Lian-Lian Liu ◽  
Fei Chen ◽  
Jing-Hang Wu ◽  
Wen-Wei Li ◽  
Jie-Jie Chen ◽  
...  

Graphitic carbon nitride (gCN) has attracted increasing interests in photocatalysis because of its visible-light-responsive ability, environmental friendliness, low cost and easiness of large-scale production. However, its practical application is restricted...


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000604-000608
Author(s):  
Matthias Hartmann ◽  
Bertram Schmidt

The current research presents recent respective to the work development of a ceramic tubular probe for online substance concentration measurements. The aim was to develop a robust and acid-resistant sensor device, which can be easily included in existing procedural pipeline systems. To archive those goals a lot of factors had to be checked. For the substance concentration measurements a capacitive sensor effect was chosen. With this method even low substance concentrations down to one-tenth of a per cent can be indentified. For the package material zirconium oxide (tetragonal zirconia polycrystal – TZP) was used. Zirconium oxide is a technical ceramic which is wear-resistant, acid-resistant, has a low thermal conductivity, is electrically isolating and can be uses in a ceramic injection molding (CIM) process. In the phase of the sensor design process multiple geometries for the sensor effect and integration space for the evaluation electronics had to be considered. A standardized DN 10 DIN 32676 flanged joint was also added for an unproblematic connection to the pipelines. All these needed geometries had to be integrated into one ceramic element. As a result of these requirements a 3D CAD model of the sensor element was designed. The CAD-file has shown that there was only the CIM technology left to comprehend developed sensor geometry. CIM is a low cost process for large-scale production which is distinguished by high size accuracy. In the CIM process the material shrinkage, this is caused by the needed debindering and sintering steps, had to be considered. The developed ceramic tubular probe was successfully tested in multiple fluidic systems. It has left the test phase and is now ready for maturity phase.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohcin Akri ◽  
Shu Zhao ◽  
Xiaoyu Li ◽  
Ketao Zang ◽  
Adam F. Lee ◽  
...  

AbstractDry reforming of methane (DRM) is an attractive route to utilize CO2 as a chemical feedstock with which to convert CH4 into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM. Experimental and computational studies reveal that isolated Ni atoms are intrinsically coke-resistant due to their unique ability to only activate the first C-H bond in CH4, thus avoiding methane deep decomposition into carbon. This discovery offers new opportunities to develop large-scale DRM processes using earth abundant catalysts.


Nanoscale ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 5145-5150 ◽  
Author(s):  
Chongyang Tang ◽  
Nan Zhang ◽  
Qi Shao ◽  
Xiaoqing Huang ◽  
Xiangheng Xiao

Ordered Pd–Pb nanocubes (NCs) were adopted as efficient heterocatalysts for the selective benzyl alcohol oxidation. Due to the ordered phase and well-defined surface, the Pd–Pb NCs can achieve superior activity and selectivity, better than those of other catalysts as we prepared.


Sign in / Sign up

Export Citation Format

Share Document