scholarly journals Low-cost Large Scale Vermicompost Unit

2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.

2020 ◽  
Vol 8 (6) ◽  
pp. 5265-5268

The work in this paper is focused , about the sugarcane harvesting machine, as India is considered as one of the higher consumers and producers of sugarcane and its by products and to due to huge population, there is a high demand of sugarcane and to meet the demand of population, large scale production has to be adopted, hence for farming and harvesting the sugarcane an automated, low cost harvester is necessary for the farmers to reduce the efforts of sugarcane harvesting and to increase the rate of sugar cane cutting. This machine will be helpful for the farmers having both small and big farms, the work on this paper was carried to identify the major options along with the opportunities and major chances for future enhancement in the field of agriculture industries.


2020 ◽  
pp. 266-271
Author(s):  
M.V. Zlokazov ◽  
V.A. Korotkov

Laser and plasma hardening practically do not damage the surface, so the parts after their execution are sent to the assembly without finishing machining, which reduces the complexity and logistics of the process. In conditions of dry friction hardened steel discs 45 and 40Kh increase wear resistance up to 100 times. The service life of parts strengthened by laser and plasma hardening is repeatedly increased. Laser hardening differs from plasma hardening by higher cost of equipment, therefore it is preferable in large-scale production. Plasma installation UDGZ-200, thanks to manual operation, it is possible to temper the surfaces inaccessible or inaccessible to other hardening methods. This, together with the low cost of equipment, makes plasma hardening cost-effective in conditions of single-unit and small-scale productions.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


2019 ◽  
Vol 7 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Maria L.A.D. Lestari ◽  
Rainer H. Müller ◽  
Jan P. Möschwitzer

Background: Miniaturization of nanosuspensions preparation is a necessity in order to enable proper formulation screening before nanosizing can be performed on a large scale. Ideally, the information generated at small scale is predictive for large scale production. Objective: This study was aimed to investigate the scalability when producing nanosuspensions starting from a 10 g scale of nanosuspension using low energy wet ball milling up to production scales of 120 g nanosuspension and 2 kg nanosuspension by using a standard high energy wet ball milling operated in batch mode or recirculation mode, respectively. Methods: Two different active pharmaceutical ingredients, i.e. curcumin and hesperetin, have been used in this study. The investigated factors include the milling time, milling speed, and the type of mill. Results: Comparable particle sizes of about 151 nm to 190 nm were obtained for both active pharmaceutical ingredients at the same milling time and milling speed when the drugs were processed at 10 g using low energy wet ball milling or 120 g using high energy wet ball milling in batch mode, respectively. However, an adjustment of the milling speed was needed for the 2 kg scale produced using high energy wet ball milling in recirculation mode to obtain particle sizes comparable to the small scale process. Conclusion: These results confirm in general, the scalability of wet ball milling as well as the suitability of small scale processing in order to correctly identify the most suitable formulations for large scale production using high energy milling.


2020 ◽  
Vol 175 ◽  
pp. 10008
Author(s):  
Thi Hoai Nguyen ◽  
Duc Luan Nguyen

In this paper, the authors analyze the current situation of agricultural production in Vietnam and affirm that fragmentation is one of the basic causes leading to ineffective potentials and low labor productivity. Based on this, the authors propose a number of solutions to convert small-scale production to large-scale production in order to improve labor productivity and optimally exploit resources in the agricultural sector in Vietnam today.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1051
Author(s):  
Eduardo Martínez-Molina ◽  
Carlos Chocarro-Wrona ◽  
Daniel Martínez-Moreno ◽  
Juan A. Marchal ◽  
Houria Boulaiz

Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.


2008 ◽  
Vol 3 (2) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Zoubida Charrouf ◽  
Dominique Guillaume

For years, in southwestern Morocco, the decline of the argan forest has been accompanied by the concomitant desert encroachment. Preservation of this forest by increasing the economic value of argan tree was proposed twenty years ago, but successful large scale production of certified, high quality argan oil, an edible oil introduced as a functional food, has only been recently achieved. Argan oil is now marketed in most developed countries, despite its elevated price, and protection of the argan forest is now seriously being considered. The aim of this work is to present the recent progress made in argan oil production, the ways explored to commercialize the oil extraction by-products, and recent attempts to use other argan tree parts as part of a long term aim to preserve the argan forest.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37830-37836 ◽  
Author(s):  
Wei Wei ◽  
Linlin Guo ◽  
Xiaoyang Qiu ◽  
Peng Qu ◽  
Maotian Xu ◽  
...  

Although many routes have been developed that can efficiently improve the electrochemical performance of LiFePO4 cathodes, few of them meet the urgent industrial requirements of large-scale production, low cost and excellent performance.


Sign in / Sign up

Export Citation Format

Share Document