Can Metal Organic Frameworks Outperform Adsorptive Removal of Harmful Phenolic Compound 2-Chlorophenol by Activated Carbon?

Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<b>Abstract:</b> Removal of persistent organic compounds from aqueous solutions is generally achieved using adsorbent like activated carbon (AC) but it suffers from limited adsorption capacity due to low surface area. This paper describes a pioneering work on the adsorption of an organic pollutant, 2-chlorophenol (2-CP) by two MOFs with high surface area and water stability; MIL-101 and its amino-derivative, MIL-101-NH<sub>2</sub>. Although MOFs have higher surface area than AC, the latter was proven better having the highest equilibrium 2-CP uptake (345 mg.g<sup>-1</sup>), followed by MIL-101 (121 mg.g<sup>-1</sup>) and MIL-101-NH<sub>2</sub> (84 mg.g<sup>-1</sup>). Used MIL-101 could be easily regenerated multiple times by washing with ethanol and even showed improved adsorption capacity after each washing cycle. These results can open the doors to meticulous adsorbent selection for treating 2-CP-contaminated water

2019 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<b>Abstract:</b> Removal of persistent organic compounds from aqueous solutions is generally achieved using adsorbent like activated carbon (AC) but it suffers from limited adsorption capacity due to low surface area. This paper describes a pioneering work on the adsorption of an organic pollutant, 2-chlorophenol (2-CP) by two MOFs with high surface area and water stability; MIL-101 and its amino-derivative, MIL-101-NH<sub>2</sub>. Although MOFs have higher surface area than AC, the latter was proven better having the highest equilibrium 2-CP uptake (345 mg.g<sup>-1</sup>), followed by MIL-101 (121 mg.g<sup>-1</sup>) and MIL-101-NH<sub>2</sub> (84 mg.g<sup>-1</sup>). Used MIL-101 could be easily regenerated multiple times by washing with ethanol and even showed improved adsorption capacity after each washing cycle. These results can open the doors to meticulous adsorbent selection for treating 2-CP-contaminated water


2014 ◽  
Vol 1073-1076 ◽  
pp. 81-85
Author(s):  
Chun Yu Xi ◽  
Xue Bin Chu ◽  
Mu Yao Xi ◽  
Li Kun Zhao ◽  
Yun Ze Sun ◽  
...  

The objective of this research is to prepare high surface area activated carbon (AC) from agricultural biomass materials–pine nut shells–by the method of carbonization and alkaline activation. Adsorption isotherms of creatinine (CR) by pine nut shell-based high surface area activated carbon (AC) from aqueous medium have been studied. The results have been found that samples have larger capacity for removing CR from solution. The adsorption capacity of CR as intensity at first 50 min. After 50 min, it’s smooth and steady. The carbons prepared with KOH could be effectively used for the removal of CR.


BioResources ◽  
2007 ◽  
Vol 2 (2) ◽  
pp. 193-209 ◽  
Author(s):  
Lotfi Khezami ◽  
Aissa Ould-Dris ◽  
Richard Capart

The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%), a high surface area (>1700 m2.g-1), and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1540
Author(s):  
Muhammad Ahmad ◽  
Tehseen Nawaz ◽  
Mohammad Mujahid Alam ◽  
Yasir Abbas ◽  
Shafqat Ali ◽  
...  

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 419
Author(s):  
Hamza Ahmad Isiyaka ◽  
Khairulazhar Jumbri ◽  
Nonni Soraya Sambudi ◽  
Jun Wei Lim ◽  
Bahruddin Saad ◽  
...  

Drift deposition of emerging and carcinogenic contaminant dicamba (3,6-dichloro-2-methoxy benzoic acid) has become a major health and environmental concern. Effective removal of dicamba in aqueous medium becomes imperative. This study investigates the adsorption of a promising adsorbent, MIL-101(Cr) metal-organic framework (MOF), for the removal of dicamba in aqueous solution. The adsorbent was hydrothermally synthesized and characterized using N2 adsorption-desorption isotherms, Brunauer, Emmett and Teller (BET), powdered X-ray diffraction (XRD), Fourier Transformed Infrared (FTIR) and field emission scanning electron microscopy (FESEM). Adsorption models such as kinetics, isotherms and thermodynamics were studied to understand details of the adsorption process. The significance and optimization of the data matrix, as well as the multivariate interaction of the adsorption parameters, were determined using response surface methodology (RSM). RSM and artificial neural network (ANN) were used to predict the adsorption capacity. In each of the experimental adsorption conditions used, the ANN gave a better prediction with minimal error than the RSM model. The MIL-101(Cr) adsorbent was recycled six times to determine the possibility of reuse. The results show that MIL-101(Cr) is a very promising adsorbent, in particular due to the high surface area (1439 m2 g−1), rapid equilibration (~25 min), high adsorption capacity (237.384 mg g−1) and high removal efficiency of 99.432%.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


ChemInform ◽  
2010 ◽  
Vol 33 (48) ◽  
pp. no-no
Author(s):  
Manfred Schwickardi ◽  
Thorsten Johann ◽  
Wolfgang Schmidt ◽  
Ferdi Schueth

2013 ◽  
Vol 125 (43) ◽  
pp. 11492-11495 ◽  
Author(s):  
Ruirui Yun ◽  
Zhiyong Lu ◽  
Yi Pan ◽  
Xiaozeng You ◽  
Junfeng Bai

Sign in / Sign up

Export Citation Format

Share Document