scholarly journals Memory of Chirality in Room Temperature Flow Electrochemical Reactor

Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield and a higher enantiomeric excess. These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

Abstract Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an l-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield (71%) and a higher enantiomeric excess (64%). These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes.


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield and a higher enantiomeric excess. These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Electrochemical methods are inherently green and environmentally benign. However, organic electrosynthesis via microflow reactor has number of advantages such as fast reaction’s time, optimization and scale up, safer environment, high selectivities and reduce chances of overoxidation. Flow electrochemical reactor provides high surface-to-volume ratio and reactions are possible to perform in the reactor without a supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we have achieved that continuous flow electrolysis is better than batch electrolysis, producing a good yield (71%) and a better enantiomeric excess (64%). These results show that continuous flow electrolysis has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Flow performed in microreactors offers up a number of benefits allowing reactions to be performed in a more convenient and safer manner, and even allow electrochemical reactions to take place without a supporting electrolyte due to a very short interelectrode distance. By the comparison of electrochemical oxidations in batch and flow we have found that continuous flow is able to outperform its batch counterpart, producing a good yield (71%) and a better enantiomeric excess (64%) than batch with a 98% conversion. We have, therefore, provided evidence that continuous flow chemistry has the potential to act as a new enabling technology to replace some aspects of conventional batch processes. </p>


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Flow performed in microreactors offers up a number of benefits allowing reactions to be performed in a more convenient and safer manner, and even allow electrochemical reactions to take place without a supporting electrolyte due to a very short interelectrode distance. By the comparison of electrochemical oxidations in batch and flow we have found that continuous flow is able to outperform its batch counterpart, producing a good yield (71%) and a better enantiomeric excess (64%) than batch with a 98% conversion. We have, therefore, provided evidence that continuous flow chemistry has the potential to act as a new enabling technology to replace some aspects of conventional batch processes. </p>


2013 ◽  
Vol 9 ◽  
pp. 1508-1516 ◽  
Author(s):  
Sándor B Ötvös ◽  
Ádám Georgiádes ◽  
István M Mándity ◽  
Lóránd Kiss ◽  
Ferenc Fülöp

The preparation of novel multi-substituted 1,2,3-triazole-modified β-aminocyclohexanecarboxylic acid derivatives in a simple and efficient continuous-flow procedure is reported. The 1,3-dipolar cycloaddition reactions were performed with copper powder as a readily accessible Cu(I) source. Initially, high reaction rates were achieved under high-pressure/high-temperature conditions. Subsequently, the reaction temperature was lowered to room temperature by the joint use of both basic and acidic additives to improve the safety of the synthesis, as azides were to be handled as unstable reactants. Scale-up experiments were also performed, which led to the achievement of gram-scale production in a safe and straightforward way. The obtained 1,2,3-triazole-substituted β-aminocyclohexanecarboxylates can be regarded as interesting precursors for drugs with possible biological effects.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


2020 ◽  
Vol 16 ◽  
Author(s):  
Délis Galvão Guimarães ◽  
Arlan de Assis Gonsalves ◽  
Larissa Araújo Rolim ◽  
Edigênia Cavalcante Araújo ◽  
Victória Laysna dos Anjos Santos ◽  
...  

Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, then the modification at their redox center is an interesting strategy to overcome such harmful activity. Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β-lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity. Method: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media. Result: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, being compounds 3 and 4 the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC50 values in the range 2.90–12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte. Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.


1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Hanwen Liu ◽  
Wei-Hong Lai ◽  
Qiuran Yang ◽  
Yaojie Lei ◽  
Can Wu ◽  
...  

Abstract This work reports influence of two different electrolytes, carbonate ester and ether electrolytes, on the sulfur redox reactions in room-temperature Na–S batteries. Two sulfur cathodes with different S loading ratio and status are investigated. A sulfur-rich composite with most sulfur dispersed on the surface of a carbon host can realize a high loading ratio (72% S). In contrast, a confined sulfur sample can encapsulate S into the pores of the carbon host with a low loading ratio (44% S). In carbonate ester electrolyte, only the sulfur trapped in porous structures is active via ‘solid–solid’ behavior during cycling. The S cathode with high surface sulfur shows poor reversible capacity because of the severe side reactions between the surface polysulfides and the carbonate ester solvents. To improve the capacity of the sulfur-rich cathode, ether electrolyte with NaNO3 additive is explored to realize a ‘solid–liquid’ sulfur redox process and confine the shuttle effect of the dissolved polysulfides. As a result, the sulfur-rich cathode achieved high reversible capacity (483 mAh g−1), corresponding to a specific energy of 362 Wh kg−1 after 200 cycles, shedding light on the use of ether electrolyte for high-loading sulfur cathode.


Sign in / Sign up

Export Citation Format

Share Document