scholarly journals Insights Into Defect Arrangements in Y-Doped BaZrO3 From Large-Scale First-Principles Thermodynamic Sampling: Association, Repulsion, Percolation, and Trapping

Author(s):  
Shusuke Kasamatsu ◽  
Osamu Sugino ◽  
Takafumi Ogawa ◽  
Akihide Kuwabara

<div>Y-doped BaZrO<sub>3</sub> is an ion conductor under intense research for application in medium temperature solid oxide fuel cells. The conductivity is maximized at ~20% doping, and the decrease with further doping has often been attributed to the association effect, or the trapping of ionic charge carriers by the dopant. This seems like a reasonable conjecture since the dopant and carrier are charged in opposite polarities</div><div>and should attract each other. However, at such high doping concentrations, many-body interactions between nearby dopants and carriers are likely to modify such a simple two-body attraction picture. Thus, in this work, we employ a large-scale first-principles thermodynamic sampling scheme to directly examine the configuration of dopants and charge-compensating defects at realistic doping concentrations under processing conditions. We find that although there is, indeed, a clear Y<sub>Zr</sub> – V<sub>O </sub>association effect at all doping concentrations examined, the magnitude of the effect actually decreases with increasing dopant concentration. We also find that Y<sub>Zr</sub>–Y<sub>Zr </sub>and V<sub>O</sub> –V<sub>O </sub>interactions cannot simply be understood in terms of two-body Coulomb attraction and repulsion, highlighting the importance of many-body effects in understanding the defect chemistry</div><div>in heavily doped oxides. Finally, we examine the dopant configurations and successfully explain the conductivity maximum based on a percolation vs. trapping picture that has gained attention recently.</div>

2020 ◽  
Author(s):  
Shusuke Kasamatsu ◽  
Osamu Sugino ◽  
Takafumi Ogawa ◽  
Akihide Kuwabara

<div>Y-doped BaZrO<sub>3</sub> is an ion conductor under intense research for application in medium temperature solid oxide fuel cells. The conductivity is maximized at ~20% doping, and the decrease with further doping has often been attributed to the association effect, or the trapping of ionic charge carriers by the dopant. This seems like a reasonable conjecture since the dopant and carrier are charged in opposite polarities</div><div>and should attract each other. However, at such high doping concentrations, many-body interactions between nearby dopants and carriers are likely to modify such a simple two-body attraction picture. Thus, in this work, we employ a large-scale first-principles thermodynamic sampling scheme to directly examine the configuration of dopants and charge-compensating defects at realistic doping concentrations under processing conditions. We find that although there is, indeed, a clear Y<sub>Zr</sub> – V<sub>O </sub>association effect at all doping concentrations examined, the magnitude of the effect actually decreases with increasing dopant concentration. We also find that Y<sub>Zr</sub>–Y<sub>Zr </sub>and V<sub>O</sub> –V<sub>O </sub>interactions cannot simply be understood in terms of two-body Coulomb attraction and repulsion, highlighting the importance of many-body effects in understanding the defect chemistry</div><div>in heavily doped oxides. Finally, we examine the dopant configurations and successfully explain the conductivity maximum based on a percolation vs. trapping picture that has gained attention recently.</div>


1991 ◽  
Vol 5 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Gregory J. Tawa ◽  
Jules W. Moskowitz ◽  
Paula A. Whitlock ◽  
Kevin E. Schmidt

1990 ◽  
Vol 186 ◽  
Author(s):  
J. Mikalopas ◽  
P.E.A. Turchi ◽  
M. Sluiter ◽  
P.A. Sterne

AbstractThe phase stability of fcc-based Ni-V substitutional alloys is investigated using linear muffin-tin orbitals total energy (LMTO) calculations. The method of Connolly and Williams (CWM) is used to extract many body interactions from the ground state energies of selected ordered configurations. These interactions are used in conjunction with the cluster variation method (CVM) to calculate the alloy phase diagram. The dependence of the interactions on the choice of configurations used to calculate them is examined.


1990 ◽  
Vol 213 ◽  
Author(s):  
J. Mikalopas ◽  
P.A. Sterne ◽  
M. Sluiter ◽  
P.E.A. Turchi

ABSTRACTOne way to calculate the coherent phase diagram of an alloy based on first principles methods is to compute the ground state total energy for various ordered configurations, from which many-body interactions can be calculated and employed in a thermodynamic model. If the Connolly and Williams method (CWM) is used to extract the many-body interactions from the calculated total energies, the resulting many-body interactions can exhibit a strong dependence on the choice of ordered configurations and multi-site clusters, and the accuracy and convergence of the CWM energy expansion is not assured. To overcome this difficulty, a successful systematic method for implementing the CWM is proposed. This approach is applied to a study of the fcc-based Ni-V and Pd-V substitutional alloys and these interaction parameters together with the cluster variation method (CVM) are used to calculate phase diagrams.


2020 ◽  
Vol 8 (25) ◽  
pp. 12674-12686
Author(s):  
Shusuke Kasamatsu ◽  
Osamu Sugino ◽  
Takafumi Ogawa ◽  
Akihide Kuwabara

The proton conductivity maximum in doped BaZrO3 is explained by a percolation vs. many-body trapping picture using first-principles thermodynamics calculations.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2018 ◽  
Author(s):  
Pavel Pokhilko ◽  
Evgeny Epifanovsky ◽  
Anna I. Krylov

Using single precision floating point representation reduces the size of data and computation time by a factor of two relative to double precision conventionally used in electronic structure programs. For large-scale calculations, such as those encountered in many-body theories, reduced memory footprint alleviates memory and input/output bottlenecks. Reduced size of data can lead to additional gains due to improved parallel performance on CPUs and various accelerators. However, using single precision can potentially reduce the accuracy of computed observables. Here we report an implementation of coupled-cluster and equation-of-motion coupled-cluster methods with single and double excitations in single precision. We consider both standard implementation and one using Cholesky decomposition or resolution-of-the-identity of electron-repulsion integrals. Numerical tests illustrate that when single precision is used in correlated calculations, the loss of accuracy is insignificant and pure single-precision implementation can be used for computing energies, analytic gradients, excited states, and molecular properties. In addition to pure single-precision calculations, our implementation allows one to follow a single-precision calculation by clean-up iterations, fully recovering double-precision results while retaining significant savings.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


Sign in / Sign up

Export Citation Format

Share Document