scholarly journals Indium Hydroxide/Silver/Carbon Nanocomposite: Synthesis via Galvanic Reaction between In Nanoparticles and Silver Nitrate, Characterization and Its Photocatalytic Activity

Author(s):  
Pui Munn Wong ◽  
Teck Hock Lim ◽  
Joon Ching Juan ◽  
Jau Choy Lai

<p>Sub-10 nm indium metal nanoparticles (In NPs) stabilized on conductive carbon were reacted with silver nitrate in dark in water at room temperature in a galvanic replacement manner to produce indium hydroxide/silver/carbon nanocomposite (In(OH)<sub>3</sub>/Ag/C). The chosen carbon imparted colloidal stability, high surface area and water dispersibility suitable for photodegradation of harmful dyes in water. The size and shape of indium hydroxide and silver nanoparticles produced were found to be similar to that of the In NPs started with. The nanocomposite was characterized by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDAX), Powder X-Ray Diffraction (PXRD) and Thermogravimetric Analysis (TGA). The galvanic reaction between In NPs and silver nitrate was tracked with UV-Vis Spectroscopy in a control experiment without conducting carbon to confirm that the reaction was indeed thermodynamically spontaneous as indicated by the positive electromotive force (EMF) of +1.14 V calculated for In/Ag<sup>+</sup> redox couple. The nanocomposite’s photocatalytic performance was evaluated to be 90% under UVC radiation when 10 ppm of methylene blue and 13 wt% of indium hydroxide/silver loading on carbon were used. <b></b></p>

2020 ◽  
Author(s):  
Pui Munn Wong ◽  
Teck Hock Lim ◽  
Joon Ching Juan ◽  
Jau Choy Lai

<p>Sub-10 nm indium metal nanoparticles (In NPs) stabilized on conductive carbon were reacted with silver nitrate in dark in water at room temperature in a galvanic replacement manner to produce indium hydroxide/silver/carbon nanocomposite (In(OH)<sub>3</sub>/Ag/C). The chosen carbon imparted colloidal stability, high surface area and water dispersibility suitable for photodegradation of harmful dyes in water. The size and shape of indium hydroxide and silver nanoparticles produced were found to be similar to that of the In NPs started with. The nanocomposite was characterized by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDAX), Powder X-Ray Diffraction (PXRD) and Thermogravimetric Analysis (TGA). The galvanic reaction between In NPs and silver nitrate was tracked with UV-Vis Spectroscopy in a control experiment without conducting carbon to confirm that the reaction was indeed thermodynamically spontaneous as indicated by the positive electromotive force (EMF) of +1.14 V calculated for In/Ag<sup>+</sup> redox couple. The nanocomposite’s photocatalytic performance was evaluated to be 90% under UVC radiation when 10 ppm of methylene blue and 13 wt% of indium hydroxide/silver loading on carbon were used. <b></b></p>


2021 ◽  
pp. 2150006
Author(s):  
Biao Wang ◽  
Ya Liu ◽  
Xu Huai ◽  
Yuqing Miao

In order to develop non-noble metal-based electrocatalysts for glucose oxidation, the Ni-doped, urchin-like Bi2S3 particles were prepared by a solvothermal method using the solvent of ethylene glycol/H2O. The obtained products were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The background signal from capacitance current is relatively low and the electrocatalytic oxidation current of glucose relatively high due to the urchin-like nanostructure of Bi2S3 particles and high surface area where the presence of Bi also improves the electrocatalytic performance of NiII/NiIII shift.


2012 ◽  
Vol 585 ◽  
pp. 95-99 ◽  
Author(s):  
M. Mahajan ◽  
K. Singh ◽  
O.P. Pandey

Vanadium carbide is known for its applications due to extreme hardness and high melting point. In this present work, vanadium carbide nanoparticles have been synthesized in a specially designed stainless steel autoclave by solvothermal route using vanadium pentoxide (V2O5) as precursor along with a hydrocarbon acetone (C3H6O) in the presence of reducing agent magnesium (Mg). The optimization of reaction time was studied at constant temperature of 800oC. The product powder was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM) and Brunauer – Emmett – Teller (BET) techniques. The results indicate that the product was vanadium carbide having particle size of about 30 nm with high surface area.


1987 ◽  
Vol 111 ◽  
Author(s):  
Pankaj K. Sinha ◽  
Timothy S. Cale

AbstractThe distribution of nickel and copper between crystallites supported on high surface area silica (Cabosil HS5) has been studied using a Philips 400 series transmission electron microscope equipped with super twin lenses, a field emission gun and EDAX energy dispersive X-ray spectroscope. The same Ni-Cu catalysts have previously been characterized and used in cyclopropane hydrogenolysis kinetics. The good intercrystallite homogeneity found in a well reduced sample having 31% nominal copper validates a critical assumption made in these previous studies. Limited data on unreduced and partially reduced samples also highlight the need to carefully control the degree of reduction in kinetic and characterization studies.


NANO ◽  
2012 ◽  
Vol 07 (05) ◽  
pp. 1250036 ◽  
Author(s):  
FEI TENG ◽  
JUN WANG ◽  
MINDONG CHEN ◽  
DENNIS DESHENG MNEG

The Co3O4 nanorod bundles are synthesized by a hydrothermal method. The samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED), X-ray powder diffractometer (XRD), and nitrogen adsorption. It is important that the as-obtained Co3O4 nanorod bundles are assembled by nanoparticles. The porous nanorod bundle electrode exhibits a higher rate capacity and a higher reverse capability for lithium ion battery than the solid nanorods, which is attributed to the high surface area and the porous structure.


2017 ◽  
Vol 3 (1) ◽  
pp. 20-26
Author(s):  
Atik Setyani ◽  
Emas Agus Prastyo Wibowo

Nanotubes received great attention because it has a high surface area. In this study, TiO2 nanotubes fabricated via hydrothermal method from  synthesis of TiO2 nanoparticles via sol-gel method. Catalysts that have been synthesized later in the characterization by X-Ray Diffraction (XRD) to obtain the crystal size and crystallinity. Crystal size of TiO2 nanoparticles at a temperature of 450C is 13.78 nm. Then characterized by Transmission Electron Microscopy (TEM) to look at the formation of nanotubes. Characterization of TiO2 nanotubes with TEM shows that the structure of the tubes had already been formed TNTs although the growth has not been perfect. It can be seen from the structure TNTs who tend to be short and yet so irregular.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5036  


Author(s):  
Farzad Allahnouri ◽  
Khalil Farhadi ◽  
Hamideh Imanzadeh ◽  
Rahim Molaei ◽  
Habibollah Eskandari

Abstract In the present study, a bimetallic nanostructure of gold-copper (Au-CuNPs) was decorated on the surface of porous silicon (PSi) using an easy galvanic replacement reaction between metal ions and PSi in the presence of 0.1 M hydrofluoric acid solution. The morphology and structures of the Au-CuNPs@PSi nanocomposite were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) energy-dispersive X-ray spectroscopy (EDX) and cyclic voltammetry (CV) techniques. Then, prepared nanocomposite was used as a modifier in screen-printed carbon electrode (SPCE) for the highly sensitive simultaneous determination of codeine (COD) and acetaminophen (ACE). The combination of PSi and metals nanoparticles provide a porous and high surface area with excellent electrical conductivity which leads to reduce the peak potentials and enhance the oxidation peak currents of COD and ACE at the surface of the Au-CuNPs@PSi/SPCE nanosensor. The dynamic linear ranges were obtained from 0.06 to 0.6 µM for both COD and ACE and the detection limits (3.0 S/N) estimated 0.35 µM for COD and 0.30 µM for ACE, respectively. Moreover, recovery tests were carried out in real samples such as urine, human blood plasma, and tablets.


2008 ◽  
Vol 14 (4) ◽  
pp. 328-334 ◽  
Author(s):  
Longzhou Ma ◽  
Thomas Hartmann ◽  
Marcos A. Cheney ◽  
Nancy R. Birkner ◽  
Pradip K. Bhowmik

Layer- and tunnel-structured manganese oxide nanomaterials are important because of their potential applications in industrial catalysis. A novel soft chemistry method was developed for the synthesis of inorganic cryptomelane nanomaterials with high surface area. Bright field transmission electron microscopy (BF-TEM) and high-resolution transmission electron microscopy (HRTEM) techniques were employed to characterize this nanomaterial. A nanosized material with fibrous texture comprised of 140–160 nm striations was identified by BF-TEM imaging. HRTEM images show multiple atomic morphologies such as “helix-type,” “doughnut-like,” and tunnel structures lying on different crystallographic planes. The crystallographic parameters of this material were analyzed and measured by X-ray powder diffraction (XRD) showing that the synthesized nanomaterial is single phased and corresponds to cryptomelane with major diffraction peaks (for 10° < 2θ < 60°) at d-spacing values of 6.99, 4.94, 3.13, 2.40, 2.16, 1.84, 1.65, and 1.54 Å. A “doughnut-like” crystal structure was confirmed based on the crystallographic data. Structure and lattice parameters refinement was performed by XRD/Rietveld analysis. Simple simulation of HRTEM images and selected area diffraction patterns were applied to interpret the HRTEM images as observed.


2019 ◽  
Vol 9 (4) ◽  
pp. 255-267 ◽  
Author(s):  
Sedighe Akbari ◽  
Mohammad Mehdi Foroughi ◽  
Hadi Hassani Nadiki ◽  
Shohreh Jahani

For the first time, a new method for preparation of graphene oxide-LaMnO3 (GO-LaMnO3) nanocompositeas a material of electrochemical sensor for simultaneous determination of catechol (CT) and hydroquinone (HQ) is developed. LaMnO3 nanoparticles have been characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX) technique. Due to the excellent catalytic activity, enhanced electrical conductivity and high surface area, the simultaneous determination of HQ and CT with two well-defined peaks has been achieved at the GO-LaMnO3 modified electrode. Comparing with unmodified electrodes, the oxidation currents of HQ and CT increased remarkably. Also, the result exhibited a great decrease in anodic overpotentialresulting in about 150 mV negative shift of potential. The catalytic peak current values are found linearly dependent on the HQ and CT concentrations in the range of 0.5–433.3 and 0.5–460.0 μM with sensitivity of 0.0719 and 0.0712 μA μM-1, respectively. The detection limits for HQ and CT are determined as 0.06 and 0.05 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document