Amide-to-Ester Substitution Improves Membrane Permeability of a Cyclic Peptide Without Altering Its Three-Dimensional Structure

Author(s):  
Yuki Hosono ◽  
Jumpei Morimoto ◽  
Chad Townsend ◽  
Colin N. Kelly ◽  
Matthew R. Naylor ◽  
...  

<div> <div> <div> <p>Cyclic peptides are attractive molecules as inhibitors with high affinity and selectivity against intracellular protein-protein interactions (PPIs). On the other hand, cyclic peptides generally have low passive cell-membrane permeability, which makes it difficult to discover cyclic peptides that efficiently permeate into cells and inhibit intracellular PPIs. Here, we show that backbone amide-to-ester substitutions are useful for improving membrane permeability of peptides. Permeability in a series of model dipeptides increased upon amide-to-ester substitution. Amide-to-ester substitutions increased permeability in the same manner as amide-to-N-methyl amide substitutions, which are conventionally used for increasing permeability. Furthermore, amide-to-ester substitutions of exposed amides of a cyclic peptide successfully improved permeability. Conformational studies of the cyclic peptides using NMR and molecular mechanics calculations revealed that an amide-to-ester substitution of an exposed amide bond did not affect its low-energy conformation in CDCl<sub>3</sub>, in contrast with an N-methyl amide substitution. We envision that amide-to-ester substitution will be a potentially useful strategy for rational design of bioactive peptides with high membrane permeability. </p> </div> </div> </div>

2020 ◽  
Author(s):  
Yuki Hosono ◽  
Jumpei Morimoto ◽  
Chad Townsend ◽  
Colin N. Kelly ◽  
Matthew R. Naylor ◽  
...  

<div> <div> <div> <p>Cyclic peptides are attractive molecules as inhibitors with high affinity and selectivity against intracellular protein-protein interactions (PPIs). On the other hand, cyclic peptides generally have low passive cell-membrane permeability, which makes it difficult to discover cyclic peptides that efficiently permeate into cells and inhibit intracellular PPIs. Here, we show that backbone amide-to-ester substitutions are useful for improving membrane permeability of peptides. Permeability in a series of model dipeptides increased upon amide-to-ester substitution. Amide-to-ester substitutions increased permeability in the same manner as amide-to-N-methyl amide substitutions, which are conventionally used for increasing permeability. Furthermore, amide-to-ester substitutions of exposed amides of a cyclic peptide successfully improved permeability. Conformational studies of the cyclic peptides using NMR and molecular mechanics calculations revealed that an amide-to-ester substitution of an exposed amide bond did not affect its low-energy conformation in CDCl<sub>3</sub>, in contrast with an N-methyl amide substitution. We envision that amide-to-ester substitution will be a potentially useful strategy for rational design of bioactive peptides with high membrane permeability. </p> </div> </div> </div>


2021 ◽  
Vol 75 (6) ◽  
pp. 518-521
Author(s):  
Stephanie M. Linker ◽  
Shuzhe Wang ◽  
Benjamin Ries ◽  
Thomas Stadelmann ◽  
Sereina Riniker

Proteins with large and flat binding sites as well as protein–protein interactions are considered ' undruggable ' with conventional small-molecule drugs. Cyclic peptides have been found to be capable of binding to such targets with high affinity, making this class of compounds an interesting source for possible therapeutics. However, the oftentimes poor passive membrane permeability of cyclic peptides still imposes restrictions on the applicability of cyclic peptide drugs. Here, we describe how computational methods in combination with experimental data can be used to improve our understanding of the structure–permeability relationship. Especially the conformational dynamic and chameleonic nature of cyclic peptides, which we investigate by a combination of MD simulations and kinetic modeling, is important for their ability to permeate passively through the membrane. The insights from such studies may enable the formulation of design principles for the rational design of permeable cyclic peptides.


2004 ◽  
Vol 32 (1) ◽  
pp. 28-32 ◽  
Author(s):  
D. Morikis ◽  
A.M. Soulika ◽  
B. Mallik ◽  
J.L. Klepeis ◽  
C.A. Floudas ◽  
...  

Compstatin is a 13-residue cyclic peptide that has the ability to inhibit the cleavage of C3 to C3a and C3b. The effects of targeting C3 cleavage are threefold, and result in hindrance of: (i) the generation of the pro-inflammatory peptide C3a, (ii) the generation of opsonin C3b (or its fragment C3d), and (iii) further complement activation of the common pathway (beyond C3) with the end result of the generation of the membrane attack complex. We will report on our progress on: (i) rational design of more active compstatin analogues based on the three-dimensional structure of compstatin, (ii) experimental combinatorial design based on the generation of a phage-displayed peptide library partially randomized with the implementation of structure-induced restraints, and (iii) theoretical combinatorial design based on a novel computational optimization method, structure-induced restraints and flexible structural templates. All three approaches have resulted in analogues with improved activities. Currently, the lead analogue has the sequence acetyl-I[CVYQDWGAHRC]T-NH2 (where the brackets denote cyclization), and is 16-fold more active than the parent peptide. We will also report on our progress towards understanding the dynamic character of compstatin using molecular dynamics simulations. The identification of an ensemble of interconverting conformers of compstatin with variable populations is a first step towards the incorporation of dynamic elements in the design of new analogues using dynamics–activity relationships in addition to structure–activity relationships.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 311
Author(s):  
Yang Li ◽  
Wang Li ◽  
Zhengshuang Xu

Peptides have a three-dimensional configuration that can adopt particular conformations for binding to proteins, which are well suited to interact with larger contact surface areas on target proteins. However, low cell permeability is a major challenge in the development of peptide-related drugs. In recent years, backbone N-methylation has been a useful tool for manipulating the permeability of cyclic peptides/peptidomimetics. Backbone N-methylation permits the adjustment of molecule’s conformational space. Several pathways are involved in the drug absorption pathway; the relative importance of each N-methylation to total permeation is likely to differ with intrinsic properties of cyclic peptide/peptidomimetic. Recent studies on the permeability of cyclic peptides/peptidomimetics using the backbone N-methylation strategy and synthetic methodologies will be presented in this review.


2003 ◽  
Vol 89 (01) ◽  
pp. 74-82 ◽  
Author(s):  
Koen Verbeke ◽  
Ann Gils ◽  
Jean-Marie Stassen ◽  
Paul Declerck

SummaryInterfering with increased levels of plasminogen activator inhibitor-1 (PAI-1) might offer new therapeutic strategies for a variety of cardiovascular diseases. Inactivation of PAI-1 can be accomplished by a number of monoclonal antibodies (MA), including MA-8H9D4. In a previous study, a single-chain variable fragment (scFv-8H9D4) was cloned and found to have the same properties as the parental MA-8H9D4. In the present study, we identified the residues of scFv-8H9D4 that contribute significantly to the paratope. The complementarity determining region 3 from the heavy (H3) and the light (L3) chain were analysed through site-directed mutagenesis. Out of twelve mutations, only four residues appeared to contribute to the paratope. The affinity of scFv-8H9D4-H3-L97D for PAI-1 was 38-fold decreased (KA = 4.8 ± 0.2 × 107 M–1 vs. 1.8 ± 0.7 × 109 M–1 for scFv-8H9D4) whereas scFv-8H9D4-H3-R98Y did not bind to PAI-1. The affinities of scFv-8H9D4-L3-Y91S and scFv-8H9D4-L3-F94D for PAI-1 were 9- and 5-fold reduced, respectively, whereas the combined mutation resulted in an 86-fold decreased affinity (KA = 2.1 ± 0.2 × 107 M–1).In accordance with the affinity data, these mutants had no, or a reduced, PAI-1 inhibitory capacity, confirming that these four particular residues form the major interaction site of scFv-8H9D4 with PAI-1. In combination with the three-dimensional structure, these data contribute to the rational design of PAI-1 neutralizing compounds.


2011 ◽  
Vol 436 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Masanori Noda ◽  
Susumu Uchiyama ◽  
Adam R. McKay ◽  
Akihiro Morimoto ◽  
Shigeki Misawa ◽  
...  

Proteins often exist as ensembles of interconverting states in solution which are often difficult to quantify. In the present manuscript we show that the combination of MS under nondenaturing conditions and AUC-SV (analytical ultracentrifugation sedimentation velocity) unambiguously clarifies a distribution of states and hydrodynamic shapes of assembled oligomers for the NAP-1 (nucleosome assembly protein 1). MS established the number of associated units, which was utilized as input for the numerical analysis of AUC-SV profiles. The AUC-SV analysis revealed that less than 1% of NAP-1 monomer exists at the micromolar concentration range and that the basic assembly unit consists of dimers of yeast or human NAP-1. These dimers interact non-covalently to form even-numbered higher-assembly states, such as tetramers, hexamers, octamers and decamers. MS and AUC-SV consistently showed that the formation of the higher oligomers was suppressed with increasing ionic strength, implicating electrostatic interactions in the formation of higher oligomers. The hydrodynamic shapes of the NAP-1 tetramer estimated from AUC-SV agreed with the previously proposed assembly models built using the known three-dimensional structure of yeast NAP-1. Those of the hexamer and octamer could be represented by new models shown in the present study. Additionally, MS was used to measure the stoichiometry of the interaction between the human NAP-1 dimer and the histone H2A–H2B dimer or H3–H4 tetramer. The present study illustrates a rigorous procedure for the analysis of protein assembly and protein–protein interactions in solution.


2019 ◽  
Vol 47 (W1) ◽  
pp. W331-W337 ◽  
Author(s):  
Ankit A Roy ◽  
Abhilesh S Dhawanjewar ◽  
Parichit Sharma ◽  
Gulzar Singh ◽  
M S Madhusudhan

Abstract Our web server, PIZSA (http://cospi.iiserpune.ac.in/pizsa), assesses the likelihood of protein–protein interactions by assigning a Z Score computed from interface residue contacts. Our score takes into account the optimal number of atoms that mediate the interaction between pairs of residues and whether these contacts emanate from the main chain or side chain. We tested the score on 174 native interactions for which 100 decoys each were constructed using ZDOCK. The native structure scored better than any of the decoys in 146 cases and was able to rank within the 95th percentile in 162 cases. This easily outperforms a competing method, CIPS. We also benchmarked our scoring scheme on 15 targets from the CAPRI dataset and found that our method had results comparable to that of CIPS. Further, our method is able to analyse higher order protein complexes without the need to explicitly identify chains as receptors or ligands. The PIZSA server is easy to use and could be used to score any input three-dimensional structure and provide a residue pair-wise break up of the results. Attractively, our server offers a platform for users to upload their own potentials and could serve as an ideal testing ground for this class of scoring schemes.


Author(s):  
W. Baumeister ◽  
M. Hahn ◽  
W.O. Saxton

Regularly organized surface (RS) layers are a feature common to many bacterial species; they are clearly more abundant than was anticipated even a few years ago. The RS-layers are believed to fulfil a variety of functions in the interaction between the cell and its environment (see e.g. [1]). The so-called HPI-layer of the radiotolerant bacterium Deinococcus radiodurans is a typical example of such a layer: It is composed of a single polypeptide species (Mr 105 kDa) arranged on a hexagonal lattice to form a network that covers the entire surface of the bacterium; it is associated with the outer membrane via hydrophobic protein-protein interactions.Isolated HPI-layer sheets, released from the outer membrane by detergent treatment, have been studied in the electron microscope making extensive use of the present arsenal of preparation techniques: negative staining, (auro- thio)glucose embedding, freeze-dried/unstained, freeze-dried/metal shadowed etc.Because of the notorious problem of lattice imperfections image processing usually followed the strategy of correlation averaging as outlined in some detail elsewhere.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 142 ◽  
Author(s):  
Flavien Zannini ◽  
Thomas Roret ◽  
Jonathan Przybyla-Toscano ◽  
Tiphaine Dhalleine ◽  
Nicolas Rouhier ◽  
...  

In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure–function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron–sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein–protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document