scholarly journals Apparent Activation Energy in Electrochemical Multistep Reactions: A Description via Degrees of Rate Control

Author(s):  
Alfredo Calderón-Cárdenas ◽  
Enrique A. Paredes-Salazar ◽  
Hamilton Varela

<div> <div> <div> <p>Activation energy is a well-known empirical parameter in chemical kinetics that characterises the dependence of the chemical rate coefficients on the temperature and provides information to compare the intrinsic activity of the catalysts. However, the determination and interpretation of the apparent activation energy in multistep reactions is not an easy task. For this purpose, the concept of degree of rate control is convenient, which comprises a mathematical approach for analyzing reaction mechanisms and chemical kinetics. Although this concept has been used in catalysis, it has not yet been applied in electrocatalytic systems, whose ability to control the potential across the solid/liquid interface is the main difference with heterogenous catalysis, and the electrical current is commonly used as a measure of the reaction rate. Herein we use the definition of ‘degree of rate control for elementary step’ to address some of the drawbacks that frequently arise with interpreting apparent activation energy as a measure of intrinsic electrocatalytic activity of electrode. For this, an electrokinetic model Langmuir-Hinshelwood-like is used for making numerical experiments and verifying the proposed ideas. The results show that to improve the catalytic activity of an electrode material, it must act upon the reaction steps with the highest normalised absolute values of degree of rate control. On the other hand, experiments at different applied voltages showed that if the electroactive surface poisoning process take place, changes in 𝐸𝑎𝑝𝑝 can not be used to compare the catalytic activity of the electrodes. Finally, the importance of making measurements at steady-state to avoid large errors in the calculations of apparent activation energy is also discussed. </p> </div> </div> </div>

2020 ◽  
Author(s):  
Alfredo Calderón-Cárdenas ◽  
Enrique A. Paredes-Salazar ◽  
Hamilton Varela

<div> <div> <div> <p>Activation energy is a well-known empirical parameter in chemical kinetics that characterises the dependence of the chemical rate coefficients on the temperature and provides information to compare the intrinsic activity of the catalysts. However, the determination and interpretation of the apparent activation energy in multistep reactions is not an easy task. For this purpose, the concept of degree of rate control is convenient, which comprises a mathematical approach for analyzing reaction mechanisms and chemical kinetics. Although this concept has been used in catalysis, it has not yet been applied in electrocatalytic systems, whose ability to control the potential across the solid/liquid interface is the main difference with heterogenous catalysis, and the electrical current is commonly used as a measure of the reaction rate. Herein we use the definition of ‘degree of rate control for elementary step’ to address some of the drawbacks that frequently arise with interpreting apparent activation energy as a measure of intrinsic electrocatalytic activity of electrode. For this, an electrokinetic model Langmuir-Hinshelwood-like is used for making numerical experiments and verifying the proposed ideas. The results show that to improve the catalytic activity of an electrode material, it must act upon the reaction steps with the highest normalised absolute values of degree of rate control. On the other hand, experiments at different applied voltages showed that if the electroactive surface poisoning process take place, changes in 𝐸𝑎𝑝𝑝 can not be used to compare the catalytic activity of the electrodes. Finally, the importance of making measurements at steady-state to avoid large errors in the calculations of apparent activation energy is also discussed. </p> </div> </div> </div>


ACS Catalysis ◽  
2020 ◽  
Vol 10 (16) ◽  
pp. 9336-9345 ◽  
Author(s):  
Alfredo Calderón-Cárdenas ◽  
Enrique A. Paredes-Salazar ◽  
Hamilton Varela

Author(s):  
K. S. Hui ◽  
Christopher Y. H. Chao ◽  
C. W. Kwong ◽  
M. P. Wan

This study investigated the performance of multi-transition metal (Cu, Cr, Ni and Co) ions exchanged zeolite 13X catalysts on methane emission abatement, especially at methane level of the exhaust from natural gas fueled vehicles. Catalytic activity of methane combustion using multi-ions exchanged catalyst was studied under different parameters: mole % of metal loading, inlet velocity and inlet methane concentration at atmospheric pressure and 500 °C. Performance of the catalysts was investigated and explained in terms of the apparent activation energy, number of active sites and BET surface area of the catalyst. This study showed that the multi-ions exchanged catalyst outperformed the single-ions exchanged and the acidified 13X catalysts. Lengthening the residence time could also lead to higher methane conversion %. Catalytic activity of the catalysts was influenced by the mole % of metal loading which played important roles in affecting the apparent activation energy of methane combustion, active sites and also the BET surface area of the catalyst. Increasing mole % of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. In view of these, there existed an optimized mole % of metal loading where the highest catalytic activity was observed.


1985 ◽  
Vol 50 (7) ◽  
pp. 1573-1581 ◽  
Author(s):  
Hana Zahradníková ◽  
Václav Kárník ◽  
Ludvík Beránek

The course of activation at 673 and 773 K of an industrial hydrodesulphurization catalyst CHEROX 36-01 was followed gravimetrically. Reduction with hydrogen, reductive sulphidation with a H2S/H2 mixture, non-reductive sulphidation with a H2S/He mixture and sulphidation of prereduced catalysts were compared. All sulphidation procedures are much faster than the reduction alone, the latter has, however, a higher apparent activation energy. In the reductive sulphidation with H2S/H2, reduction and sulphidation take place simultaneously, sulphidation being a predominant process at the beginning of the activation, especially at 673 K. It has been shown how the two processes can be decoupled or superposed. The catalytic activity in ethylene hydrogenation develops much more slowly when the catalyst is activated only by reduction than when it is activated by reductive sulphidation, in accordance with the relative velocities of these two activation procedures. The hydrogenation activity of catalysts reduced to a different extent correlates with their oxygen chemisorption capacity at 195 K.


1990 ◽  
Vol 55 (8) ◽  
pp. 1928-1934 ◽  
Author(s):  
Jaroslav Bartoň ◽  
Vladimír Pour

The properties of pure and platinum-doped LaMnO3 perovskites, including their catalytic activities for the reaction of CO with oxygen, have been determined. Perovskite samples were prepared by decomposition of lanthanum and manganese citrates. The surface areas were 12.2 m2/g for pure LaMnO3 and 9.8 m2/g for the platinum-doped sample. The doping with a small amount of platinum markedly enhances the catalytic activity of LaMnO3 perovskite. The (CO + O2) reaction starts at 200 °C over LaMnO3 and at temperatures below 100 °C over a sample doped with Pt. The reaction kinetics for both the pure and platinum-doped LaMnO3 can be described by empirical equation (4). When Pt-doped perovskite is used, an increase in the apparent activation energy occurs at about 150 °C. This fact is attributed to a change in the mechanism of CO oxidation.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Guanghao Cheng ◽  
Gurong Shen ◽  
Jun Wang ◽  
Yunhao Wang ◽  
Weibo Zhang ◽  
...  

The present work reports the effects of γ-, θ-phase of alumina on the hydrothermal stability and the properties of non- and strongly-interacting Rh species of the Rh/Al2O3 catalysts. Comparing to γ-Al2O3, θ-Al2O3 can not only reduce the amount of occluded Rh but also better stabilize Rh during hydrothermal aging treatment. When the aging time was prolonged to 70 h, all the non-interacting Rh was transformed into strongly-interacting Rh and occluded Rh. The XPS results indicated that non- and strongly-interacting Rh might exist in the form of Rh/Rh3+ and Rh4+, respectively. CO-NO reaction was chosen as a probe reaction to research more information about non- and strongly-interacting Rh. The two Rh species had similar apparent activation energy (Eapp) of 170 kJ/mol, which indicated that non- and strongly-interacting Rh follow the same reaction path. The non-interacting Rh was removed from aged samples by the acid-treated method, and obtained results showed that only 2.5% and 4.0% non-interacting Rh was maintained in aged Rh/γ-Al2O3 and Rh/θ-Al2O3.


2013 ◽  
Vol 316-317 ◽  
pp. 1018-1023
Author(s):  
Xin Zhu Li ◽  
Ji Shi Zhang

Cr-substituted mesoporous aluminophosphate molecular sieve (Cr-MAP) was synthesized and characterized. Crystallization kinetics curves measured as an index to the relative degree of crystallinity, according to the Arrhenius equation to calculate the apparent nucleation activation energy and crystal growth activation energy of Cr-MAP, which was 63.7 and 14.7 kJ• mol-1, respectively. Cr-MAP had highly catalytic activity for fabricating acetophenone by selectively oxizing ethylbenzene. Using tert-butylhydroperoxide as oxidant and chlorobenzene as solvent at 100 °C for 8 h, acetophenone selectivity, acetophenone yield and ethylbenzene conversion reaches 85.4, 62.2 and 72.8 %, respectively.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


Nanoscale ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 4854-4863 ◽  
Author(s):  
Zijie Zhang ◽  
Yuqing Li ◽  
Xiaohan Zhang ◽  
Juewen Liu

Molecular imprinting accelerates nanozyme catalysis and improves specificity attributable to selective adsorption of imprinted substrate, decreasing activation energy and facilitating product release.


Sign in / Sign up

Export Citation Format

Share Document