scholarly journals Influence of Mechanical, Thermal, and Electrical Perturbations on the Dielectric Behaviour of Guest-Encapsulated HKUST-1 Crystals

Author(s):  
Arun Babal ◽  
Jin-Chong Tan

<p>Metal-organic frameworks (MOFs) are the emerging low-<i>k</i> dielectric materials for application in next-generation microelectronics and telecommunication devices. MOF dielectrics can function as smart sensors with high sensitivity and chemical selectivity, by leveraging the ubiquituous dielectric response of MOFs and overcoming the limitations of DC conductivity and fluorescence approaches. Herein we study the effects of materials synthesis, applied mechanical stress (37-520 MPa), varying temperature (20-100°C), and guest encapsulation on the frequency-dependent dielectric response (4 Hz to 1 MHz) and AC conductivity of the HKUST-1 MOF. Particularly, we show that the confinement of the triethylamine (NEt<sub>3</sub>) guest molecules in HKUST-1 (host) yields the NEt<sub>3</sub>@HKUST-1 system that is tuneable <i>via</i> mechanical, thermal and electrical perturbations. Within the frequency range of 10 kHz to 1 MHz, at 20 °C we show that the dielectric constant (𝜀‘) of the guest-encapsulated system could be tuned to attain a value of between 2.8 and 7.2; at 100 °C, an even greater range of 𝜀‘ from 3.1 to 9.5 could be achieved. Conversely, we found the dielectric tuneability of the porous (guest-free) HKUST-1 is relatively more limited (𝜀‘ = 2.8 to 4.9) whist employing the same operational parameters. Furthermore, the confinement of guest molecules in HKUST-1 enhances the mechanical resilience and yield strength of the powders subject to a compressive pelleting stress. Together, the results elucidate the new potential for exploiting host-guest interactions in MOFs, coupled with electro-thermo-mechanical stimuli to regulate the precise dielectric response of a designer low-<i>k</i> material.</p>

2020 ◽  
Author(s):  
Arun Babal ◽  
Jin-Chong Tan

<p>Metal-organic frameworks (MOFs) are the emerging low-<i>k</i> dielectric materials for application in next-generation microelectronics and telecommunication devices. MOF dielectrics can function as smart sensors with high sensitivity and chemical selectivity, by leveraging the ubiquituous dielectric response of MOFs and overcoming the limitations of DC conductivity and fluorescence approaches. Herein we study the effects of materials synthesis, applied mechanical stress (37-520 MPa), varying temperature (20-100°C), and guest encapsulation on the frequency-dependent dielectric response (4 Hz to 1 MHz) and AC conductivity of the HKUST-1 MOF. Particularly, we show that the confinement of the triethylamine (NEt<sub>3</sub>) guest molecules in HKUST-1 (host) yields the NEt<sub>3</sub>@HKUST-1 system that is tuneable <i>via</i> mechanical, thermal and electrical perturbations. Within the frequency range of 10 kHz to 1 MHz, at 20 °C we show that the dielectric constant (𝜀‘) of the guest-encapsulated system could be tuned to attain a value of between 2.8 and 7.2; at 100 °C, an even greater range of 𝜀‘ from 3.1 to 9.5 could be achieved. Conversely, we found the dielectric tuneability of the porous (guest-free) HKUST-1 is relatively more limited (𝜀‘ = 2.8 to 4.9) whist employing the same operational parameters. Furthermore, the confinement of guest molecules in HKUST-1 enhances the mechanical resilience and yield strength of the powders subject to a compressive pelleting stress. Together, the results elucidate the new potential for exploiting host-guest interactions in MOFs, coupled with electro-thermo-mechanical stimuli to regulate the precise dielectric response of a designer low-<i>k</i> material.</p>


2020 ◽  
Author(s):  
Yang Zhang ◽  
Abhijeet Chaudhari ◽  
Mario Gutierrez ◽  
Jin-Chong Tan

<div><div><div><p>Luminescent metal-organic frameworks (MOFs) offer a multifunctional platform for engineering non-invasive sensors and tuneable optoelectronics. However, multichromic materials that are photophysically resilient and show high sensitivity towards different physical and chemical stimuli are scarce. We report a facile host-guest nanoconfinement strategy to construct a hybrid material with multichromic sensing capabilities. We design and fabricate a new Guest@MOF material: comprising a zeolitic MOF (ZIF-71), acting as a nanoporous host for encapsulating rhodamine B (RhB) guest molecules, resulting in the RhB@ZIF‑71 system with mechanochromic, thermochromic, and solvatochromic sensing response. The multichromic properties stem from the nanoconfinement effect that ZIF-71 imposes on RhB monomers, yielding the H-type or J-type aggregates with tuneable photophysical and photochemical properties. For mechanochromism, the external pressure causes an emission red shift in a linear fashion, switching the RhB guests from H-type to J-type aggregates <i>via</i> a shear mechanism. For thermochromism, we demonstrate a linear scaling as a function of temperature due to the spatial restriction experienced by J-type aggregates incarcerated in ZIF-71 pores. Harnessing the solvatochromism of RhB@ZIF‑71, we identified three diverse groups of volatile organic compounds. The multimodal response could pave the way to smart applications like photonic pressure sensors, non-invasive thermometers, and ultrasensitive chemosensors.</p></div></div></div>


2020 ◽  
Author(s):  
Yang Zhang ◽  
Abhijeet Chaudhari ◽  
Mario Gutierrez ◽  
Jin-Chong Tan

<div><div><div><p>Luminescent metal-organic frameworks (MOFs) offer a multifunctional platform for engineering non-invasive sensors and tuneable optoelectronics. However, multichromic materials that are photophysically resilient and show high sensitivity towards different physical and chemical stimuli are scarce. We report a facile host-guest nanoconfinement strategy to construct a hybrid material with multichromic sensing capabilities. We design and fabricate a new Guest@MOF material: comprising a zeolitic MOF (ZIF-71), acting as a nanoporous host for encapsulating rhodamine B (RhB) guest molecules, resulting in the RhB@ZIF‑71 system with mechanochromic, thermochromic, and solvatochromic sensing response. The multichromic properties stem from the nanoconfinement effect that ZIF-71 imposes on RhB monomers, yielding the H-type or J-type aggregates with tuneable photophysical and photochemical properties. For mechanochromism, the external pressure causes an emission red shift in a linear fashion, switching the RhB guests from H-type to J-type aggregates <i>via</i> a shear mechanism. For thermochromism, we demonstrate a linear scaling as a function of temperature due to the spatial restriction experienced by J-type aggregates incarcerated in ZIF-71 pores. Harnessing the solvatochromism of RhB@ZIF‑71, we identified three diverse groups of volatile organic compounds. The multimodal response could pave the way to smart applications like photonic pressure sensors, non-invasive thermometers, and ultrasensitive chemosensors.</p></div></div></div>


2018 ◽  
Author(s):  
Younghwan Cha ◽  
Jung-In Lee ◽  
Panpan Dong ◽  
Xiahui Zhang ◽  
Min-Kyu Song

A novel strategy for the oxidation of Mg-based intermetallic compounds using CO<sub>2</sub> as an oxidizing agent was realized via simple thermal treatment, called ‘CO2-thermic Oxidation Process (CO-OP)’. Furthermore, as a value-added application, electrochemical properties of one of the reaction products (carbon-coated macroporous silicon) was evaluated. Considering the facile tunability of the chemical/physical properties of Mg-based intermetallics, we believe that this route can provide a simple and versatile platform for functional energy materials synthesis as well as CO<sub>2</sub> chemical utilization in an environment-friendly and sustainable way.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2021 ◽  
Vol 9 (7) ◽  
pp. 1811-1820
Author(s):  
Shuang Yan ◽  
Bin Luo ◽  
Jia He ◽  
Fang Lan ◽  
Yao Wu

Novel bimetallic metal–organic framework nanocomposites were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity and high selectivity toward phosphopeptides and good reusability of five cycles for enriching phosphopeptides.


2021 ◽  
Author(s):  
Luis David Rosales-Vazquez ◽  
Alejandro Dorazco-González ◽  
Victor Sanchez-Mendieta

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be accomplished by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(II) and...


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 23975-23984
Author(s):  
Xue Yang ◽  
Yixia Ren ◽  
Hongmei Chai ◽  
Xiufang Hou ◽  
Zhixiang Wang ◽  
...  

Four fluorescent 2D Zn-MOFs based on a flexible triangular ligand and linear N-donor ligands are hydrothermally prepared and used to detect nitrobenzene in aqueous solution with high sensitivity, demonstrating their potential as fluorescent sensors.


Sign in / Sign up

Export Citation Format

Share Document