scholarly journals Material Property Targets for Emerging Nanomaterials to Enable Point-of-Use and Point-of-Entry Water Treatment Systems

Author(s):  
Elvis Eugene ◽  
William Phillip ◽  
Alexander Dowling

The scarcity of potable water is an imminent threat to at least half the world's population. Engineered nanomaterials (ENMs) have the potential to treat water from polluted sources to mitigate the scarcity of potable water. However, the performance demands on these materials in practical applications has not been studied in detail. This is but one of the challenges that hinder the widespread implementation of ENMs for water treatment. The emerging fit-for-purpose paradigm which encourages water treatment at the point-of-use (POU) or point-of-entry (POE) could lower the barrier for the use of ENMs in water technology by incorporating smaller, decentralized ENM-based treatment systems. This work develops a bottom-up and top-down modeling framework to facilitate the design of nanoporous membrane-based sorbents, a promising class of ENMs, for POU and POE water treatment applications. Langmuir isotherm and membrane structure-property calculations provide the multiscale link between molecular properties, including affinity, saturation capacity, and pore size, device design decisions, including membrane area and thickness, and system design decisions, including sorbent mass and number of parallel modules. The framework predicts that for lead contaminants, existing materials are near molecular and systems limitations; improvements in the properties of adsorptive materials to treat lead will yield few benefits for POU and POE treatment systems. Moreover, the framework provides dimensionless formulas that apply to all adsorptive systems that exhibit (near) equilibrium behavior as an easy-to-use tool for the broader membrane science and environmental engineering communities to assess the feasibility of emerging materials to meet process demands. A case study regarding materials for arsenic removal demonstrates how to apply the modeling framework to calculate material properties targets and predict system performance for an arbitrary single-solute adsorption process. Finally, these dimensionless models are used to identify three distinct regions of relative performance between batch and semi-continuous processes. These results give caution to applying scale-up heuristics outside their valid region, which can lead to under- or over-design during bottom-up studies. The presented modeling framework is a crucial step to fully optimize engineered nanomaterials across material, device, and system scales.

2020 ◽  
Author(s):  
Elvis Eugene ◽  
William Phillip ◽  
Alexander Dowling

The scarcity of potable water is an imminent threat to at least half the world's population. Engineered nanomaterials (ENMs) have the potential to treat water from polluted sources to mitigate the scarcity of potable water. However, the performance demands on these materials in practical applications has not been studied in detail. This is but one of the challenges that hinder the widespread implementation of ENMs for water treatment. The emerging fit-for-purpose paradigm which encourages water treatment at the point-of-use (POU) or point-of-entry (POE) could lower the barrier for the use of ENMs in water technology by incorporating smaller, decentralized ENM-based treatment systems. This work develops a bottom-up and top-down modeling framework to facilitate the design of nanoporous membrane-based sorbents, a promising class of ENMs, for POU and POE water treatment applications. Langmuir isotherm and membrane structure-property calculations provide the multiscale link between molecular properties, including affinity, saturation capacity, and pore size, device design decisions, including membrane area and thickness, and system design decisions, including sorbent mass and number of parallel modules. The framework predicts that for lead contaminants, existing materials are near molecular and systems limitations; improvements in the properties of adsorptive materials to treat lead will yield few benefits for POU and POE treatment systems. Moreover, the framework provides dimensionless formulas that apply to all adsorptive systems that exhibit (near) equilibrium behavior as an easy-to-use tool for the broader membrane science and environmental engineering communities to assess the feasibility of emerging materials to meet process demands. A case study regarding materials for arsenic removal demonstrates how to apply the modeling framework to calculate material properties targets and predict system performance for an arbitrary single-solute adsorption process. Finally, these dimensionless models are used to identify three distinct regions of relative performance between batch and semi-continuous processes. These results give caution to applying scale-up heuristics outside their valid region, which can lead to under- or over-design during bottom-up studies. The presented modeling framework is a crucial step to fully optimize engineered nanomaterials across material, device, and system scales.


2018 ◽  
Author(s):  
Benjamin W. Lykins ◽  
Robert M. Clark ◽  
James A. Goodrich

2018 ◽  
Vol 17 (2) ◽  
pp. 266-273 ◽  
Author(s):  
D. Brown ◽  
C. Farrow ◽  
E. A. McBean ◽  
B. Gharabaghi ◽  
J. Beauchamp

Abstract Diarrheal illnesses and fatalities continue to be major issues in many regions throughout the world. Household water treatment (HWT) technologies (including both point-of-use (POU) and point-of-entry (POE) treatment solutions) have been shown as able to deliver safe water in many low-income communities. However, as shown herein, there are important inconsistencies in protocols employed for validating performance of HWTs. The WHO does not stipulate influent concentration as a parameter that could influence removal efficacy, nor does it indicate an influent concentration range that should be used during technology evaluations. A correlation between influent concentration and removal is evidenced herein (R2 = 0.88) with higher influent concentrations resulting in higher log-removal values (LRVs). The absence of a recommended standard influent concentration of bacteria (as well as for viruses and protozoa) could have negative consequences in intervention efforts. Recommendations are provided that regulatory bodies should specify an influent concentration range for testing and verification of HWT technologies.


1989 ◽  
Vol 18 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Deborah K. Klinko ◽  
Charles W. Abdalla

Point-of-use/point-of-entry treatment can provide an affordable means for rural residents on private wells to remedy groundwater contamination. Cooperation among homeowners was hypothesized to be a means of further reducing treatment costs due to quantity discounts and avoidance of dealer mark-ups. Data obtained through a mail survey of water treatment firms was used to test this hypothesis. Individual and group purchase, installation and maintenance costs and manufacturer and dealer costs were compared using analysis of variance. Results indicate a cooperative treatment approach may provide benefits due to quantity discounts but little potential exists for savings via direct manufacturer purchase.


2012 ◽  
Vol 12 (5) ◽  
pp. 637-647 ◽  
Author(s):  
M. A. Hamouda ◽  
W. B. Anderson ◽  
P. M. Huck

Point-of-use (POU) and point-of-entry (POE) drinking water treatment systems are gaining prominence, particularly from the point-of-view of technical appropriateness and consumer acceptance. They are becoming an increasingly viable alternative for small water treatment systems or in individual homes. However, sustainability concerns have been voiced in a number of studies investigating these devices. In this paper, sustainability is examined with respect to the fulfillment of treatment systems for a set of technical, economic, environmental and socio-cultural objectives. Consequently, the use of a hierarchy of sustainability indicators to compare various POU and POE water treatment alternatives is proposed. The indicators' definitions, as well as calculation and normalization methods are explained. The paper also presents a decision model that is capable of selecting the most sustainable treatment option. The model employs the analytical hierarchy process (AHP) to help in the analysis of indicators' relative importance with regard to sustainability and to develop the indicators and criteria weights required for aggregating a sustainability score. The generated sustainability scores essentially level the playing field when comparing POU and POE systems for technical and economic appropriateness for a particular water treatment case, in addition to incorporating more difficult to quantify system traits, such as environmental and socio-cultural sustainability.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Adriana Muniz De Almeida Albuquerque

The water purification procedure aims to obtain a product appropriate for human consumption, minimizing the presence of contaminants and toxic substances present in the water. Among these contaminants, some radionuclides of natural origin, such as uranium, thorium and their descendants, have been identified. Studies have shown that the stages of purification are quite effective in removing the radionuclides contained in water. The removal is due to co-precipitation of the radionuclides with the suspended materials and the precipitated material is accumulated and characterized as a Technologically Concentrated Natural Occurrence Radioactive Material (TENORM) by the United States Environmental Protection Agency (USEPA). This residue can present significant levels of radioactivity and, when discarded in the environment without any treatment, can generate a problem of environmental impact and a risk to the health of the population. In this way, some gamma emitters of the series of U, Th and the K-40 were determined in the residues generated at the Potable Water Treatment Plants – PWTPs in six municipalities of Pernambuco. The results obtain corroborate the classification of the residues generated in the PWTPs as concentrators of the radioactive components contained in the water supplied to the system and reinforce the need for the release to the environment, which is the usual way of disposal of this waste, to be carried out only after considering the radiological protection standards established.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Arie Herlambang

Clean water to poor communities who live in crowded municipal area is stillexpensive and a luxury. This condition is evidenced by the number of people whouse ground water for their daily water, because water taps still seems expensivefor them. Diarrheal disease is still relatively high for Indonesia, where nearly 16thousand people suffer from diarrhea due to poor sanitation. To help the poor inthe city, there are several alternative technologies that can be applied to publicaccess to clean water and adequate low-cost, including ground water treatmenttechnology with a filter system equipped with an ultraviolet sterilizer, or ozonegenerators, or using ultrafiltration, if possible can also use the reverse osmosismembrane that for fresh water. Arsinum is the best alternative should be chosenfor fulfilled potable water in slump area.Keywords : Sanitation, water treatment technology, portable water, low-cost, slump area


2009 ◽  
Vol 8 (4) ◽  
pp. 895-900 ◽  
Author(s):  
Ionel Balcu ◽  
Adina Segneanu ◽  
Marius Mirica ◽  
Mirela Iorga ◽  
Catalin Badea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document