scholarly journals Retrosynthetic Accessibility Score (RAscore) - Rapid Machine Learned Synthesizability Classification from AI Driven Retrosynthetic Planning

Author(s):  
Amol Thakkar ◽  
Veronika Chadimova ◽  
Esben Jannik Bjerrum ◽  
Ola Engkvist ◽  
Jean-Louis Reymond

<p>Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that are able to propose synthesis to a wide range of compounds. However, at present they are too slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report a machine learning (ML) based method capable of classifying whether a synthetic route can be identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes 4,500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore should be useful for the pre-screening millions of virtual molecules from enumerated databases or generative models for synthetic accessibility and produce higher quality databases for virtual screening of biological activity. </p>

2020 ◽  
Author(s):  
Amol Thakkar ◽  
Veronika Chadimova ◽  
Esben Jannik Bjerrum ◽  
Ola Engkvist ◽  
Jean-Louis Reymond

<p>Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that are able to propose synthesis to a wide range of compounds. However, at present they are too slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report a machine learning (ML) based method capable of classifying whether a synthetic route can be identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes 4,500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore should be useful for the pre-screening millions of virtual molecules from enumerated databases or generative models for synthetic accessibility and produce higher quality databases for virtual screening of biological activity. </p>


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


2021 ◽  
Vol 10 (1) ◽  
pp. 77-88
Author(s):  
Sachin Pandurang Godse ◽  
Shalini Singh ◽  
Sonal Khule ◽  
Shubham Chandrakant Wakhare ◽  
Vedant Yadav

Physiotherapy is the trending medication for curing bone-related injuries and pain. In many cases, due to sudden jerks or accidents, the patient might suffer from severe pain. Therefore, it is the miracle medication for curing patients. The aim here is to build a framework using artificial intelligence and machine learning for providing patients with a digitalized system for physiotherapy. Even though various computer-aided assessment of physiotherapy rehabilitation exist, recent approaches for computer-aided monitoring and performance lack versatility and robustness. In the authors' approach is to come up with proposition of an application which will record patient physiotherapy exercises and also provide personalized advice based on user performance for refinement of therapy. By using OpenPose Library, the system will detect angle between the joints, and depending upon the range of motion, it will guide patients in accomplishing physiotherapy at home. It will also suggest to patients different physio-exercises. With the help of OpenPose, it is possible to render patient images or real-time video.


Beverages ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 62 ◽  
Author(s):  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Frank R. Dunshea ◽  
Sigfredo Fuentes

Beverages is a broad and important category within the food industry, which is comprised of a wide range of sub-categories and types of drinks with different levels of complexity for their manufacturing and quality assessment. Traditional methods to evaluate the quality traits of beverages consist of tedious, time-consuming, and costly techniques, which do not allow researchers to procure results in real-time. Therefore, there is a need to test and implement emerging technologies in order to automate and facilitate those analyses within this industry. This paper aimed to present the most recent publications and trends regarding the use of low-cost, reliable, and accurate, remote or non-contact techniques using robotics, machine learning, computer vision, biometrics and the application of artificial intelligence, as well as to identify the research gaps within the beverage industry. It was found that there is a wide opportunity in the development and use of robotics and biometrics for all types of beverages, but especially for hot and non-alcoholic drinks. Furthermore, there is a lack of knowledge and clarity within the industry, and research about the concepts of artificial intelligence and machine learning, as well as that concerning the correct design and interpretation of modeling related to the lack of inclusion of relevant data, additional to presenting over- or under-fitted models.


Author(s):  
Zheng Wang ◽  
Wei Zhao ◽  
Gefei Hao ◽  
Baoan Song

Computer-aided synthesis planning could facilitate organic synthesis study and relieve chemists of manual tasks. Artificial intelligence and deep learning would be useful for the development of computer-aided synthesis planning.


2020 ◽  
Author(s):  
Oky Hermansyah ◽  
Alhadi Bustamam ◽  
Arry Yanuar

Abstract Background: Dipeptidyl Peptidase-4 (DPP-4) inhibitors are becoming an essential drug in the treatment of type 2 diabetes mellitus, but some classes of these drugs have side effects such as joint pain that can become severe to pancreatitis. It is thought that these side effects appear related to their inhibition against enzymes DPP-8 and DPP-9. Objective: This study aims to find DPP-4 inhibitor hit compounds that are selective against the DPP-8 and DPP-9 enzymes. By building a virtual screening workflow using the Quantitative Structure-Activity Relationship (QSAR) method based on artificial intelligence (AI), millions of molecules from the database can be screened for the DPP-4 enzyme target with a faster time compared to other screening methods. Result: Five regression machine learning algorithms and four classification machine learning algorithms were used to build virtual screening workflows. The algorithm that qualifies for the regression QSAR model was Support Vector regression with R 2 pred 0.78, while the classification QSAR model was Random Forest with 92.21% accuracy. The virtual screening results of more than 10 million molecules from the database, obtained 2,716 hit compounds with pIC50 above 7.5. Molecular docking results of several potential hit compounds to the DPP-4, DPP-8 and DPP-9 enzymes, obtained CH0002 hit compound that has a high inhibitory potential against the DPP-4 enzyme and low inhibition of the DPP-8 and DPP-9 enzymes. Conclusion: This research was able to produce DPP-4 inhibitor hit compounds that are potential to DPP-4 and selective to DPP-8 and DPP-9 enzymes so that they can be further developed in the DPP-4 inhibitors discovery. The resulting virtual screening workflow can be applied to the discovery of hit compounds on other targets. Keywords: Artificial Intelligence; DPP-4; KNIME; Machine Learning; QSAR; Virtual Screening


2019 ◽  
Vol 52 (6) ◽  
pp. 387-396 ◽  
Author(s):  
Marcel Koenigkam Santos ◽  
José Raniery Ferreira Júnior ◽  
Danilo Tadao Wada ◽  
Ariane Priscilla Magalhães Tenório ◽  
Marcello Henrique Nogueira Barbosa ◽  
...  

Abstract The discipline of radiology and diagnostic imaging has evolved greatly in recent years. We have observed an exponential increase in the number of exams performed, subspecialization of medical fields, and increases in accuracy of the various imaging methods, making it a challenge for the radiologist to “know everything about all exams and regions”. In addition, imaging exams are no longer only qualitative and diagnostic, providing now quantitative information on disease severity, as well as identifying biomarkers of prognosis and treatment response. In view of this, computer-aided diagnosis systems have been developed with the objective of complementing diagnostic imaging and helping the therapeutic decision-making process. With the advent of artificial intelligence, “big data”, and machine learning, we are moving toward the rapid expansion of the use of these tools in daily life of physicians, making each patient unique, as well as leading radiology toward the concept of multidisciplinary approach and precision medicine. In this article, we will present the main aspects of the computational tools currently available for analysis of images and the principles of such analysis, together with the main terms and concepts involved, as well as examining the impact that the development of artificial intelligence has had on radiology and diagnostic imaging.


2021 ◽  
Vol 6 (1) ◽  
pp. 27-51
Author(s):  
Amol Thakkar ◽  
Simon Johansson ◽  
Kjell Jorner ◽  
David Buttar ◽  
Jean-Louis Reymond ◽  
...  

In this perspective we deal with questions pertaining to the development of synthesis planning technologies over the course of recent years.


Author(s):  
Waqar Hussain ◽  
Nouman Rasool ◽  
Yaser Daanial Khan

Background: Machine learning is an active area of research in computer science by the availability of big data collection of all sorts prompting interest in the development of novel tools for data mining. Machine learning methods have wide applications in computer-aided drug discovery methods. Most incredible approaches to machine learning are used in drug designing, which further aid the process of biological modelling in drug discovery. Mainly, two main categories are present which are Ligand-Based Virtual Screening (LBVS) and Structure-Based Virtual Screening (SBVS), however, the machine learning approaches fall mostly in the category of LBVS. Objectives: This study exposits the major machine learning approaches being used in LBVS. Moreover, we have introduced a protocol named FP-CADD which depicts a 4-steps rule of thumb for drug discovery, the four protocols of computer-aided drug discovery (FP-CADD). Various important aspects along with SWOT analysis of FP-CADD are also discussed in this article. Conclusions: By this thorough study, we have observed that in LBVS algorithms, Support vector machines (SVM) and Random forest (RF) are those which are widely used due to high accuracy and efficiency. These virtual screening approaches have the potential to revolutionize the drug designing field. Also, we believe that the process flow presented in this study, named FP-CADD, can streamline the whole process of computer-aided drug discovery. By adopting this rule, the studies related to drug discovery can be made homogeneous and this protocol can also be considered as an evaluation criterion in the peer-review process of research articles.


Sign in / Sign up

Export Citation Format

Share Document