scholarly journals Twistable Dipolar Aryl Rings as Electric Field Actuated Conformational Molecular Switches

Author(s):  
Kílian Jutglar Lozano ◽  
Raul Santiago ◽  
Jordi Ribas ◽  
Stefan Bromley

The ability to control the chemical conformation of a system via external stimuli is a promsing route for developing molecular switches. For eventual deployment as viable sub-nanoscale components that are compatible with current electronic device technology, conformational switching should controllable by a local electric field (i.e. E-field gateable) and accompanied by a rapid change in conduction. In organic chemical systems the degree of π-conjugation is linked to the degree of electronic delocalisation, and thus largely determines the conductivity. Here, by means of accurate first principles calculations, we study the prototypical biphenyl based molecular system in which the dihedral angle between the two rings determines the degree of conjugation. In order to make this a gateable system we create a net dipole by asymmetrically functionalising one ring with electronegative substituents (F, Br and CN) with different polarisabilities. In this way, the application of an E-field interacts with the dipolar system to influence the dihedral angle, thus controlling the conjugation. For all three considered substituents we consider a range of E-fields, and in each case extract conformational energy profiles. Using this data we obtain the minimum E-field required to induce a barrierless switching event for each system. We further extract the estimated switching speeds, the conformational probabliities at finite temperatures, and the effect of applied E-field on electronic structure. Consideration of these data allow us to assess which factors are most important in the design of efficient gateable electrical molecular switches.

2020 ◽  
Author(s):  
Kílian Jutglar Lozano ◽  
Raul Santiago ◽  
Jordi Ribas ◽  
Stefan Bromley

The ability to control the chemical conformation of a system via external stimuli is a promsing route for developing molecular switches. For eventual deployment as viable sub-nanoscale components that are compatible with current electronic device technology, conformational switching should controllable by a local electric field (i.e. E-field gateable) and accompanied by a rapid change in conduction. In organic chemical systems the degree of π-conjugation is linked to the degree of electronic delocalisation, and thus largely determines the conductivity. Here, by means of accurate first principles calculations, we study the prototypical biphenyl based molecular system in which the dihedral angle between the two rings determines the degree of conjugation. In order to make this a gateable system we create a net dipole by asymmetrically functionalising one ring with electronegative substituents (F, Br and CN) with different polarisabilities. In this way, the application of an E-field interacts with the dipolar system to influence the dihedral angle, thus controlling the conjugation. For all three considered substituents we consider a range of E-fields, and in each case extract conformational energy profiles. Using this data we obtain the minimum E-field required to induce a barrierless switching event for each system. We further extract the estimated switching speeds, the conformational probabliities at finite temperatures, and the effect of applied E-field on electronic structure. Consideration of these data allow us to assess which factors are most important in the design of efficient gateable electrical molecular switches.


2020 ◽  
Vol 15 (2) ◽  
pp. 95-101

In this work, different parameters of E7 liquid crystal (LC) have been calculated under the influence of an electric field in THz frequency. The E7 LC parameters have positive as well as negative values of order parameter and birefringence under the influence for an electric field. The director angle of E7 LC shows fast fluctuations above the angle θ=45° and due to rapid change in the orientation of molecules, fast electro-optical switching devices based on E7 LC can be designed. The refractive index of the E7 LC maintains stability in THz frequency.


Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

The topic of this chapter may seem like a digression from methods and approaches to reaction mechanisms, but it is not; it is an introduction to it. We worked on both topics for some time and there is a basic connection. Think of an electronic device and ask: how are the logic functions of this device determined? Electronic inputs (voltages and currents) are applied and outputs are measured. A truth table is constructed and from this table the logic functions of the device, and at times some of its components, may be inferred. The device is not subjected to the approach toward a chemical mechanism described in the previous chapter, of taking the device apart and testing its simplest components. (That may have to be done sometimes but is to be avoided if possible.) Can such an approach be applicable to chemical systems? We show this to be the case by discussing the implementation of logic and computational devices, both sequential machines such as a universal Turing machine (hand computers, laptops) and parallel machines, by means of macroscopic kinetics; by giving a brief comparison with neural networks; by showing the presence of such devices in chemical and biochemical reaction systems; and by presenting some confirming experiments. The next step is clear: if macroscopic chemical kinetics can carry out these electronic functions, then there are likely to be new approaches possible for the determination of complex reaction mechanisms, analogs of such determinations for electronic components. The discussion in the remainder of this chapter is devoted to illustrations of these topics; it can be skipped, except the last paragraph, without loss of continuity with chapter 5 and beyond. A neuron is either on or off depending on the signals it has received. A chemical neuron is a similar device.


Soft Matter ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Xuan Peng ◽  
Fengying Zhao ◽  
Yang Peng ◽  
Jing Li ◽  
Qingdao Zeng

In this review, STM investigations reveal that surface-assisted assembly nanostructures can be well mediated by external stimuli, including guest species, light irradiation, temperature and electric field.


2019 ◽  
Vol 28 (01n02) ◽  
pp. 1940007 ◽  
Author(s):  
M. A. Mastro ◽  
J. K. Hite ◽  
C. R. Eddy ◽  
M. J. Tadjer ◽  
S. J. Pearton ◽  
...  

Recent breakthroughs in bulk crystal growth of β-Ga2O3 by the edge-defined film-fed technique has led to the commercialization of large-area β-Ga2O3 substrates. Standard epitaxy approaches are being utilized to develop various thin-film β-Ga2O3 based devices including lateral transistors. This article will discuss the challenges for metal organic chemical vapor deposition (MOCVD) of β-Ga2O3 and the design criteria for use of this material system in power electronic device structures.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 764
Author(s):  
Peng-Fei Wang ◽  
Qianqian Hu ◽  
Tan Zheng ◽  
Yu Liu ◽  
Xiaofeng Xu ◽  
...  

Vanadium dioxide (VO2), due to its electrically induced metal-to-insulator transition with dramatic changes in electrical and optical properties, is considered to be a powerful material for electro-optical devices. However, there are still some controversies about phase transition mechanism under voltage. Here, based on optical characterizations on VO2 crystal nanofilm during the whole process of phase transition, temporal evolution and spatial distribution of changes in electricity, optic and temperature are investigated simultaneously, to explore the mechanism. The variations of Raman spectrum and reflected spectrum, and changes in current and temperature are evidences for occurrence of phase transition, which exhibit different changing behaviors with time and space. These results offer a better understanding of the phase transition mechanism, implying that lattice structure of VO2 changes gradually after applying voltage until the structure is completely converted to metallic structure, which causes a rapid increase in carrier density, resulting in a rapid change in current, reflected spectrum and temperature. Temperature rise before phase transition and applied electric field alone are not enough for triggering metal-insulator transition, but these two factors can act synergistically on structural transformation to induce phase transition.


Sign in / Sign up

Export Citation Format

Share Document