About the possibility of mistakes when using unipolar electric field pulses when assessing electronic device immunity to UWB pulses

Author(s):  
Yury V. Parfenov ◽  
Vladimir M. Chepelev ◽  
William A. Radasky
2019 ◽  
Author(s):  
Sushant Kumar Behera ◽  
Pritam Deb

<div>2D vdW heterostructures are realized promising in nano-electronics due to their tunable electronic and magnetic behaviour. Modelling of ferromagnet/non-metal combination is worth to study electronic properties. We studied external electric field tuned electronic structure and magnetic moment variation in the framework of ferromagnetic ground state ordering non-spin interaction. The heterostructure system exhibits tenability in electronic bandgap. Similarly, the magnetic moment shows minor fluctuation in its value due to interlayer polarization. This is beneficial to be extended further for interesting quantum behaviour of phase change and suitability of the system in electronic device applications.</div>


Author(s):  
Comlan Fandohan ◽  
A. G. Agwu Nnanna

To dissipate the high heat generated in microprocessors and electronic components, electrohydrodynamic (EHD) micropumps are often used. An EHD system involves the interaction of a flow field and an applied electric field; specifically, an ion-drag EHD micropump uses the interaction of an electric field with electric charges, dipoles or particles embedded in a dielectric fluid in order to generate a net flow. These EHD micropumps, require high voltage to drive the fluid, and as a result have not gained wide application. This study presents a systematic analytical method of reducing the high voltage requirement. The approach is to select a dielectric material such that flow rate is maximized with low electric potential. It is known that the dielectric maximum velocity is a function of the dielectric potential, dielectric permittivity, and viscosity. In this paper, a flow rate is assumed to be sufficient. The electric potential is decreased by selecting the appropriate fluid. Fluid of high permittivity and low viscosity will enhance the potential factor there by, decreasing the potential.


2020 ◽  
Author(s):  
Kílian Jutglar Lozano ◽  
Raul Santiago ◽  
Jordi Ribas ◽  
Stefan Bromley

The ability to control the chemical conformation of a system via external stimuli is a promsing route for developing molecular switches. For eventual deployment as viable sub-nanoscale components that are compatible with current electronic device technology, conformational switching should controllable by a local electric field (i.e. E-field gateable) and accompanied by a rapid change in conduction. In organic chemical systems the degree of π-conjugation is linked to the degree of electronic delocalisation, and thus largely determines the conductivity. Here, by means of accurate first principles calculations, we study the prototypical biphenyl based molecular system in which the dihedral angle between the two rings determines the degree of conjugation. In order to make this a gateable system we create a net dipole by asymmetrically functionalising one ring with electronegative substituents (F, Br and CN) with different polarisabilities. In this way, the application of an E-field interacts with the dipolar system to influence the dihedral angle, thus controlling the conjugation. For all three considered substituents we consider a range of E-fields, and in each case extract conformational energy profiles. Using this data we obtain the minimum E-field required to induce a barrierless switching event for each system. We further extract the estimated switching speeds, the conformational probabliities at finite temperatures, and the effect of applied E-field on electronic structure. Consideration of these data allow us to assess which factors are most important in the design of efficient gateable electrical molecular switches.


Author(s):  
Z. M. Kurbanismailov ◽  
A. T. Tarlanov ◽  
E. M. Akimov

Testing of electronic devices is an integral part of the technological process of any manufacturer of such equipment. In this case, an electronic device is understood as an energy-intensive unit such as a mobile phone, data center or spacecraft. One of the key stages of testing is to identify the effect of electric fields on various electronic components of the device. This stage often requires making a mock-up of some part of an unfinished device in order to fix interference with special equipment. This requires time, financial and human resource costs. In order to reduce these costs in the modern world, the use of mathematical modeling tools for testing noise immunity and electromagnetic compatibility is becoming popular. In this paper, it is proposed to use an algorithm for visualizing electric fields in three-dimensional space and time. The algorithm is easily embedded into applications as a component of a mathematical modeling system. The work considered three ways of visualizing the electric field strength: starting from a simple setting of points in space, on the basis of which the electric field will be built, around the source of electric field radiation, to the use of algorithms that make it possible to arrange points equidistantly based on a given number of points in space for the formation of an electric field. The performance and visual implications of these methods were analyzed. The proposed methodology will be useful to the developer community as an embedded solution for point visualization of the electric field in any project in any algorithmic language with the ability to animate in time.


2019 ◽  
Author(s):  
Sushant Kumar Behera ◽  
Pritam Deb

<div>2D vdW heterostructures are realized promising in nano-electronics due to their tunable electronic and magnetic behaviour. Modelling of ferromagnet/non-metal combination is worth to study electronic properties. We studied external electric field tuned electronic structure and magnetic moment variation in the framework of ferromagnetic ground state ordering non-spin interaction. The heterostructure system exhibits tenability in electronic bandgap. Similarly, the magnetic moment shows minor fluctuation in its value due to interlayer polarization. This is beneficial to be extended further for interesting quantum behaviour of phase change and suitability of the system in electronic device applications.</div>


2020 ◽  
Author(s):  
Kílian Jutglar Lozano ◽  
Raul Santiago ◽  
Jordi Ribas ◽  
Stefan Bromley

The ability to control the chemical conformation of a system via external stimuli is a promsing route for developing molecular switches. For eventual deployment as viable sub-nanoscale components that are compatible with current electronic device technology, conformational switching should controllable by a local electric field (i.e. E-field gateable) and accompanied by a rapid change in conduction. In organic chemical systems the degree of π-conjugation is linked to the degree of electronic delocalisation, and thus largely determines the conductivity. Here, by means of accurate first principles calculations, we study the prototypical biphenyl based molecular system in which the dihedral angle between the two rings determines the degree of conjugation. In order to make this a gateable system we create a net dipole by asymmetrically functionalising one ring with electronegative substituents (F, Br and CN) with different polarisabilities. In this way, the application of an E-field interacts with the dipolar system to influence the dihedral angle, thus controlling the conjugation. For all three considered substituents we consider a range of E-fields, and in each case extract conformational energy profiles. Using this data we obtain the minimum E-field required to induce a barrierless switching event for each system. We further extract the estimated switching speeds, the conformational probabliities at finite temperatures, and the effect of applied E-field on electronic structure. Consideration of these data allow us to assess which factors are most important in the design of efficient gateable electrical molecular switches.


2019 ◽  
Vol 94 (10) ◽  
pp. 105815 ◽  
Author(s):  
Todor Mishonov ◽  
Victor Danchev ◽  
Ioulia Chikina ◽  
Albert Varonov

Author(s):  
William Krakow

An electronic device has been constructed which manipulates the primary beam in the conventional transmission microscope to illuminate a specimen under a variety of virtual condenser aperture conditions. The device uses the existing tilt coils of the microscope, and modulates the D.C. signals to both x and y tilt directions simultaneously with various waveforms to produce Lissajous figures in the back-focal plane of the objective lens. Electron diffraction patterns can be recorded which reflect the manner in which the direct beam is tilted during exposure of a micrograph. The device has been utilized mainly for the hollow cone imaging mode where the device provides a microscope transfer function without zeros in all spatial directions and has produced high resolution images which are also free from the effect of chromatic aberration. A standard second condenser aperture is employed and the width of the cone annulus is readily controlled by defocusing the second condenser lens.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


Sign in / Sign up

Export Citation Format

Share Document