scholarly journals Native Separation and Metallation Analysis of SOD1 Protein from the Human Central Nervous System: A Methodological Workflow

Author(s):  
Stéphane Roudeau ◽  
Benjamin G. Trist ◽  
Asuncion Carmona ◽  
Katherine M. Davies ◽  
Glenda M. Halliday ◽  
...  

We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and high sensitivity X-ray-based metal detection within electrophoresis gels to analyze the metal content of single proteins purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. An important metalloprotein in the human central nervous system is copper-zinc superoxide dismutase (SOD1), an antioxidant enzyme linked to the aetiology of both amyotrophic lateral sclerosis and Parkinson’s disease. Abnormal SOD1 metallation is suspected to play a role in the pathogenic aggregation of SOD1 in both disorders, although data describing SOD1 metal occupancy in human tissues has not previously been reported. Validating our novel approach we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein vs confounding metalloproteins. We found Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28 in human central nervous system tissues from healthy individuals, a ratio close to the expected value of 1. Our methodological workflow can be adapted to study a range of metalloproteins from human tissues and other sources.<br>

2020 ◽  
Author(s):  
Stéphane Roudeau ◽  
Benjamin G. Trist ◽  
Asuncion Carmona ◽  
Katherine M. Davies ◽  
Glenda M. Halliday ◽  
...  

We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and high sensitivity X-ray-based metal detection within electrophoresis gels to analyze the metal content of single proteins purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. An important metalloprotein in the human central nervous system is copper-zinc superoxide dismutase (SOD1), an antioxidant enzyme linked to the aetiology of both amyotrophic lateral sclerosis and Parkinson’s disease. Abnormal SOD1 metallation is suspected to play a role in the pathogenic aggregation of SOD1 in both disorders, although data describing SOD1 metal occupancy in human tissues has not previously been reported. Validating our novel approach we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein vs confounding metalloproteins. We found Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28 in human central nervous system tissues from healthy individuals, a ratio close to the expected value of 1. Our methodological workflow can be adapted to study a range of metalloproteins from human tissues and other sources.<br>


2009 ◽  
Vol 5 (3-4) ◽  
pp. 35-44 ◽  
Author(s):  
Susan M. Staugaitis ◽  
Bruce D. Trapp

Cells that express the NG2 chondroitin sulfate proteoglycan and platelet-derived growth factor receptor alpha (NG2 glia) are widespread in the adult human cerebral cortex and white matter and represent 10–15% of non-neuronal cells. The morphology and distribution of NG2 glia are similar to, but distinct from, both microglia and astrocytes. They are present as early as 17 weeks gestation and persist throughout life. NG2 glia can be detected in a variety of human central nervous system (CNS) diseases, of which multiple sclerosis is the best studied. NG2 glia show morphological changes in the presence of pathology and can show expression of the Ki-67 proliferation antigen. The antigenic profile and morphology of NG2 glia in human tissues are consistent with an oligodendrocyte progenitor function that has been well established in rodent models. Most antibodies to NG2 do not stain formalin-fixed paraffin-embedded tissues. Advances in our understanding of NG2 glia in human tissues will require the development of more robust markers for their detection in routinely processed human specimens.


Author(s):  
Elizabeth Hampson

Organizational and activational effects of sex steroids were first discovered in laboratory animals, but these concepts extend to hormonal actions in the human central nervous system. This chapter begins with a brief overview of how sex steroids act in the brain and how the organizational-activational hypothesis originated in the field of endocrinology. It then reviews common methods used to study these effects in humans. Interestingly, certain cognitive functions appear to be subject to modification by sex steroids, and these endocrine influences may help explain the sex differences often seen in these functions. The chapter considers spatial cognition as a representative example because the spatial family of functions has received the most study by researchers interested in the biological roots of sex differences in cognition. The chapter reviews evidence that supports an influence of both androgens and estrogens on spatial functions, and concludes with a glimpse of where the field is headed.


1986 ◽  
Vol 11 (3) ◽  
pp. 205-214 ◽  
Author(s):  
Magnhild Sandberg-Wollheim ◽  
Burton Zweiman ◽  
Arnold I. Levinson ◽  
Robert P. Lisak

Author(s):  
Mehrak Mahmoudi ◽  
Piroz Zamankhan ◽  
William Polashenski

The nervous system remains one of the least understood biological structures due in large part to the enormous complexity of this organ. A theoretical model for the transfer of nerve impulses would be valuable for the analysis of various phenomena in the nervous system, which are difficult to study by experiments. The central nervous system is composed of more than 100 billion neurons, through which information is transmitted via nerve impulses. Nerve impulses are not immediately apparent since each impulse may be blocked during transmission, changed from a single impulse into repetitive impulse, or integrated with impulses from other neurons to form highly intricate patterns. In the human central nervous system, a neuron secretes a chemical substance called a neurotransmitter at the synapse, and this transmitter in turn acts on another neuron to cause excitation, inhibition, or some other modification of its sensitivity.


1997 ◽  
Vol 56 (6) ◽  
pp. 735-742 ◽  
Author(s):  
Anat O. Stemmer-Rachamimov ◽  
Charo Gonzalez-Agosti ◽  
Lin Xu ◽  
Jennifer A. Burwick ◽  
Roberta Beauchamp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document