scholarly journals A Red Phosphorus-Graphite Anode for K-ion Batteries

Author(s):  
Isaac Capone ◽  
Jack Aspinall ◽  
Hyeon Jeong Lee ◽  
Albert Xiao ◽  
Johannes Ihli ◽  
...  

<div><div><div><p>Red phosphorus (RP) is a promising anode material for potassium-ion batteries because of its theoretical capacity of 865mAhg–1 delivered at an average potential of 0.5V vs K+/K. However, its alloy reaction</p><p>to form KP entails a volume expansion of 162% resulting in severe stresses that lead to SEI and electrode fracture, loss of electric contact, and ultimately reduced cycle life. Moreover, its low electronic conductivity (10<sup>-14 </sup>Scm–1) limits rate capability. Here, we report a RP-graphite composite prepared by a two step ball milling procedure to control particle size and optimize carbon coating. Electrodes prepared with the composites achieve high capacity (723mAhg–1) at C/20 and retaining 75% at 5C. It also shows very good cycling stability, retaining more than 96% of the capacity after 100 cycles at 1C.</p></div></div></div>

2021 ◽  
Author(s):  
Isaac Capone ◽  
Jack Aspinall ◽  
Hyeon Jeong Lee ◽  
Albert Xiao ◽  
Johannes Ihli ◽  
...  

<div><div><div><p>Red phosphorus (RP) is a promising anode material for potassium-ion batteries because of its theoretical capacity of 865mAhg–1 delivered at an average potential of 0.5V vs K+/K. However, its alloy reaction</p><p>to form KP entails a volume expansion of 162% resulting in severe stresses that lead to SEI and electrode fracture, loss of electric contact, and ultimately reduced cycle life. Moreover, its low electronic conductivity (10<sup>-14 </sup>Scm–1) limits rate capability. Here, we report a RP-graphite composite prepared by a two step ball milling procedure to control particle size and optimize carbon coating. Electrodes prepared with the composites achieve high capacity (723mAhg–1) at C/20 and retaining 75% at 5C. It also shows very good cycling stability, retaining more than 96% of the capacity after 100 cycles at 1C.</p></div></div></div>


2015 ◽  
Vol 51 (9) ◽  
pp. 1608-1611 ◽  
Author(s):  
Kong-yao Chen ◽  
Wu-xing Zhang ◽  
Yang Liu ◽  
Hua-ping Zhu ◽  
Jian Duan ◽  
...  

A breakthrough has been made for layered K0.8Ti1.73Li0.27O4 as an anode material in sodium ion batteries via gaseous carbon coating, demonstrating a high capacity, excellent rate capability and long cycling life.


2020 ◽  
Vol 13 (08) ◽  
pp. 2050038
Author(s):  
Yang He ◽  
Wanting Sun

The tin-based materials are one kind of the most promising high-capacity anode candidates for advanced Li-ion energy storage systems. However, they still face the problem of large volume expansion during charge–discharge processes, which causes rapid capacity decay and thus largely limit their serving life in practical application. In this work, ultra-fined SnCo alloy particles were successfully synthesized by a facile reduction of metal salts in triethylene glycol (TEG) solution, and then SnCo-anchored carbon composites were obtained through the calcination of SnCo-doped poly-(2-ethyl-2-oxazoline) (PEtOx) clusters. The microstructure, morphology, chemical composition and phase constitution are systematically analyzed. It is found that the as-prepared SnCo alloy particles exhibit a uniformly dispersed spherical morphology with a small average grain size of 20 nm and also a high reversible capacity of 459.1 mAh g[Formula: see text] after 100 cycles. More significantly, the SnCo/C nanocomposites present an excellent capacity retention ratio of 91.1% over 200 cycles at 100 mA g[Formula: see text] as well as good rate capability, suggesting that due to the accelerated electrons and Li[Formula: see text] transportation, the introduction of carbon matrix could significantly improve the stability of the active SnCo nanoparticles and inhibit the occurrence of their volume expansion during cycling.


2020 ◽  
Vol 8 (26) ◽  
pp. 13261-13266 ◽  
Author(s):  
Fei Chen ◽  
Shuo Wang ◽  
Xiao-Dong He ◽  
Jia-Ying Liao ◽  
Qiao Hu ◽  
...  

Carbon-coated V2O3 hollow spheres are synthesized by a solvothermal route, with promising cycling stability and rate performance for PIBs. The homogeneous carbon coating improves the electronic conductivity and the hollow structure buffers the volume change during cycling.


Nanoscale ◽  
2018 ◽  
Vol 10 (34) ◽  
pp. 15956-15966 ◽  
Author(s):  
Rajesh Pathak ◽  
Ashim Gurung ◽  
Hytham Elbohy ◽  
Ke Chen ◽  
Khan Mamun Reza ◽  
...  

It has been a challenge to use transitional metal oxides as anode materials in Li-ion batteries due to their low electronic conductivity, poor rate capability and large volume expansion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1732
Author(s):  
Dan Zhao ◽  
Qian Zhao ◽  
Zhenyu Wang ◽  
Lan Feng ◽  
Jinying Zhang ◽  
...  

Potassium-ion batteries (KIBs) have come up as a potential alternative to lithium-ion batteries due to abundant potassium storage in the crust. Red phosphorus is a promising anode material for KIBs with abundant resources and high theoretical capacity. Nevertheless, large volume expansion, low electronic conductivity, and limited K+ charging speed in red phosphorus upon cycling have severely hindered the development of red phosphorus-based anodes. To obtain improved conductivity and structural stability, surface engineering of red phosphorus is required. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated red phosphorus nanospheres (RPNP@PEDOT) with an average diameter of 60 nm were synthesized via a facile solution-phase approach. PEDOT can relieve the volume change of red phosphorus and promote electron/ion transportation during charge−discharge cycles, which is partially corroborated by our DFT calculations. A specific capacity of 402 mAh g−1 at 0.1 A g−1 after 40 cycles, and a specific capacity of 302 mAh g−1 at 0.5 A g−1 after 275 cycles, were achieved by RPNP@PEDOT anode with a high pseudocapacitive contribution of 62%. The surface–interface engineering for the organic–inorganic composite of RPNP@PEDOT provides a novel perspective for broad applications of red phosphorus-based KIBs in fast charging occasions.


Nanoscale ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 6635-6643
Author(s):  
Die Su ◽  
Jing Dai ◽  
Min Yang ◽  
Jiaxing Wen ◽  
Jianping Yang ◽  
...  

TiO2-RP/CN was fabricated and found to possess a special structure and an excellent electronic conductivity, and the electrodes show outstanding energy storage in K half/full cells.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1946 ◽  
Author(s):  
Hae-Jun Kwon ◽  
Sang-Wook Woo ◽  
Yong-Ju Lee ◽  
Je-Young Kim ◽  
Sung-Man Lee

The electrochemical performance of modified natural graphite (MNG) and artificial graphite (AG) was investigated as a function of electrode density ranging from 1.55 to 1.7 g∙cm−3. The best performance was obtained at 1.55 g∙cm−3 and 1.60 g∙cm−3 for the AG and MNG electrodes, respectively. Both AG, at a density of 1.55 g∙cm−3, and MNG, at a density of 1.60 g∙cm−3, showed quite similar performance with regard to cycling stability and coulombic efficiency during cycling at 30 and 45 °C, while the MNG electrodes at a density of 1.60 g∙cm−3 and 1.7 g∙cm−3 showed better rate performance than the AG electrodes at a density of 1.55 g∙cm−3. The superior rate capability of MNG electrodes can be explained by the following effects: first, their spherical morphology and higher electrode density led to enhanced electrical conductivity. Second, for the MNG sample, favorable electrode tortuosity was retained and thus Li+ transport in the electrode pore was not significantly affected, even at high electrode densities of 1.60 g∙cm−3 and 1.7 g∙cm−3. MNG electrodes also exhibited a similar electrochemical swelling behavior to the AG electrodes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Die Su ◽  
Yi Pei ◽  
Li Liu ◽  
Zhixiao Liu ◽  
Junfang Liu ◽  
...  

AbstractWearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire-in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ultimately, TiO2 ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g−1 at 5 A g−1 after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO2 has a large diffusion barrier of K+, TiO2 ww/CN film demonstrates excellent performance (259 mAh g−1 at 0.05 A g−1 after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO2 ww/CN film anode and LiFePO4/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.


2011 ◽  
Vol 04 (03) ◽  
pp. 299-303 ◽  
Author(s):  
ZHUO TAN ◽  
PING GAO ◽  
FUQUAN CHENG ◽  
HONGJUN LUO ◽  
JITAO CHEN ◽  
...  

A multicomponent olivine cathode material, LiMn0.4Fe0.6PO4 , was synthesized via a novel coprecipitation method of the mixed transition metal oxalate. X-ray diffraction patterns indicate that carbon-coated LiMn0.4Fe0.6PO4 has been prepared successfully and that LiMn0.4Fe0.6PO4/C is crystallized in an orthorhombic structure without noticeable impurity. Homogeneous distribution of Mn and Fe in LiMn0.4Fe0.6PO4/C can be observed from the scanning electron microscopy (SEM) and the corresponding energy dispersive X-ray spectrometry (EDS) analysis. Hence, the electrochemical activity of each transition metal in the olivine synthesized via coprecipitation method was enhanced remarkably, as indicated by the galvanostatic charge/discharge measurement. The synthesized LiMn0.4Fe0.6PO4/C exhibits a high capacity of 158.6 ± 3 mAhg-1 at 0.1 C, delivering an excellent rate capability of 122.6 ± 3 mAhg-1 at 10 C and 114.9 ± 3 mAhg-1 at 20 C.


Sign in / Sign up

Export Citation Format

Share Document