scholarly journals The Early Steps of Molecule-to-Material Conversion in Chemical Vapor Deposition (CVD): A Case Study

Author(s):  
Davide Barreca ◽  
Ettore Fois ◽  
Alberto Gasparotto ◽  
Chiara Maccato ◽  
Mario Oriani ◽  
...  

Transition metal complexes with β-diketonate and diamine ligands are valuable precursors for the chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not clarified yet. We address this question by Density Functional Theory (DFT) and <i>ab initio</i> molecular dynamics (AIMD) in combination with the Bluemoon (BM) statistical sampling approach. AIMD simulations of the Zn β-diketonate-diamine complex Zn(hfa)<sub>2</sub>TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = <i>N</i>,<i>N</i>,<i>N’</i>,<i>N’</i>-tetramethylethylenediamine) show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyls plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.<br>

2021 ◽  
Author(s):  
Davide Barreca ◽  
Ettore Fois ◽  
Alberto Gasparotto ◽  
Chiara Maccato ◽  
Mario Oriani ◽  
...  

<p>Transition metal complexes with β-diketonate and diamine ligands are valuable precursors for the chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond cleavage mechanism on the growth surface is not clarified yet. We address this question by Density Functional Theory (DFT) and <i>ab initio</i> molecular dynamics (AIMD) in combination with the Bluemoon (BM) statistical sampling approach. AIMD simulations of the Zn β-diketonate-diamine complex Zn(hfa)<sub>2</sub>TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = <i>N</i>,<i>N</i>,<i>N’</i>,<i>N’</i>-tetramethylethylenediamine) show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyls plays a key role in aiding the cleavage of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.<b></b></p>


2021 ◽  
Author(s):  
Davide Barreca ◽  
Ettore Fois ◽  
Alberto Gasparotto ◽  
Chiara Maccato ◽  
Mario Oriani ◽  
...  

<p>Transition metal complexes with β-diketonate and diamine ligands are valuable precursors for the chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond cleavage mechanism on the growth surface is not clarified yet. We address this question by Density Functional Theory (DFT) and <i>ab initio</i> molecular dynamics (AIMD) in combination with the Bluemoon (BM) statistical sampling approach. AIMD simulations of the Zn β-diketonate-diamine complex Zn(hfa)<sub>2</sub>TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = <i>N</i>,<i>N</i>,<i>N’</i>,<i>N’</i>-tetramethylethylenediamine) show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyls plays a key role in aiding the cleavage of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.<b></b></p>


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1988
Author(s):  
Davide Barreca ◽  
Ettore Fois ◽  
Alberto Gasparotto ◽  
Chiara Maccato ◽  
Mario Oriani ◽  
...  

Transition metal complexes with β-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn β-diketonate-diamine complex Zn(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyl groups plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


1995 ◽  
Vol 377 ◽  
Author(s):  
G. Stevens ◽  
P. Santos-Filho ◽  
S. Habermehl ◽  
G. Lucovsky

ABSTRACTWe have deposited Si-nitride thin films by remote plasma-enhanced chemical-vapor deposition using different combinations of hydrogen and deuterium source gases. In one set of experiments, NH3 and SiH4 were injected downstream from a He plasma and the ratio of NH3 to SiH4 was adjusted so that deposited films contained IR-detectable bonded-H in SiN-H arrangements, but not in Si-H arrangements. Similar results were obtained using the same ND3 to SiD4 flow ratio; these films contained only SiN-D groups. However, films prepared from ND3 and SiH4 displayed both SiN-D and SiN-H groups in essentially equal concentrations establishing that H and D atoms bonded to N are derived from both source gases SiH (D) 4 and NH (D) 3, and further that inter-mixing of H and/or D atoms occurs at the growth surface. This reaction pathway is supported by additional studies in which films were grown from SD4 and ND3 with either i) He or ii) He/H2 mixtures being plasma excited. The films grown from the deuterated source gases without H2, displayed only SiN-D bands, whereas the films grown using the He/H2 mixture displayed both SiN-H and SiN-D bands. The total concentration of N-H and N-D bonds in the films grown from the He/H2 excitation was the same as the concentration of N-D, supporting the surface reaction model. In-situ mass spectrometry provides additional insights in the film deposition reactions.


Science ◽  
2020 ◽  
Vol 369 (6504) ◽  
pp. 670-674 ◽  
Author(s):  
Yi-Lun Hong ◽  
Zhibo Liu ◽  
Lei Wang ◽  
Tianya Zhou ◽  
Wei Ma ◽  
...  

Identifying two-dimensional layered materials in the monolayer limit has led to discoveries of numerous new phenomena and unusual properties. We introduced elemental silicon during chemical vapor deposition growth of nonlayered molybdenum nitride to passivate its surface, which enabled the growth of centimeter-scale monolayer films of MoSi2N4. This monolayer was built up by septuple atomic layers of N-Si-N-Mo-N-Si-N, which can be viewed as a MoN2 layer sandwiched between two Si-N bilayers. This material exhibited semiconducting behavior (bandgap ~1.94 electron volts), high strength (~66 gigapascals), and excellent ambient stability. Density functional theory calculations predict a large family of such monolayer structured two-dimensional layered materials, including semiconductors, metals, and magnetic half-metals.


2007 ◽  
Vol 989 ◽  
Author(s):  
Xiao Liu ◽  
Thomas H Metcalf ◽  
Qi Wang ◽  
Douglas M Photiadis

AbstractWe have measured the internal friction (Q-1) of amorphous silicon nitride (a-Si3Nx) films prepared by a variety of methods, including low-pressure chemical-vapor deposition (LPCVD), plasma-enhanced chemical-vapor deposition (PECVD), and hot-wire chemical-vapor deposition (HWCVD) from 0.5 K to room temperature. The measurements are made by depositing the films onto extremely high-Q silicon double paddle oscillator substrates with a resonant frequency of ~5500 Hz. We find the elastic properties of these a-Si3N4 films resemble those of amorphous silicon (a-Si), demonstrating considerable variation, depending on the film growth methods and post deposition annealing. The internal friction for most of the films shows a broad temperature-independent plateau below 30 K, characteristic of amorphous solids. The values of Q-1, however, vary from film to film in this plateau region by more than one order of magnitude. This is typical for tetrehedrally bonded amorphous thin films, like a-Si, a-Ge, and a-C. The PECVD films have the highest Q-1 just like an ordinary amorphous solid, while LPCVD films have an internal friction more than one order of magnitude lower. All the films show a reduction of Q-1 after annealing at 800°C, even for the LPCVD films which were prepared at 850°C. This can be viewed as a reduction of structural disorder.


2003 ◽  
Vol 798 ◽  
Author(s):  
Y. Gong ◽  
Y. Gu ◽  
Igor L. Kuskovsky ◽  
G. F. Neumark ◽  
J. Li ◽  
...  

ABSTRACTIt is shown that the high p-type conductivity in GaN:Mg, grown by metal-organic chemical vapor deposition followed by post-growth annealing, is due to non-equilibrium acceptor concentrations. A series of samples cut from a single GaN:Mg wafer, which initially had undergone rapid thermal annealing (RTA) after growth, has been investigated. The samples were annealed at various temperatures in nitrogen ambient for over 12 hours, and temperature-dependent Hall effect measurements were performed. For samples annealed at temperatures higher than 850 °C, the hole concentrations decrease by at least an order of magnitude, compared with the original sample. This behavior is explained by an Mg acceptor concentration in excess of its equilibrium solubility limit in the original sample; thus, at high enough temperatures, in the absence of hydrogen, Mg acceptors diffuse either to form electrically inactive precipitates or are eliminated. It is worth noting that the acceptor activation energy remains the same for all samples.


Sign in / Sign up

Export Citation Format

Share Document