scholarly journals The Density-Based Many-Body Expansion as an Efficient and Accurate Quantum-Chemical Fragmentation Method: Application to Water Clusters

Author(s):  
Daniel Schmitt-Monreal ◽  
Christoph R. Jacob

<div>Fragmentation methods based on the many-body expansion offer an attractive approach for the quantum-chemical treatment of large molecular systems, such as molecular clusters and crystals. Conventionally, the many-body expansion is performed for the total energy, but such an energy-based many-body expansion often suffers from a slow convergence with respect to the expansion order. For systems that show strong polarization effects such as water clusters, this can render the energy-based many-body expansion infeasible. Here, we establish a density-based many-body expansion as a promising alternative approach. By performing the many-body expansion for the electron density instead of the total energy and inserting the resulting total electron density into the total energy functional of density-functional theory, one can derive a density-based energy correction, which in principle accounts for all higher order polarization effects. Here, we systematically assess the accuracy of such a density-based many-body expansion for test sets of water clusters. We show that already a density-based two-body expansion is able to reproduce interaction energies per fragment within chemical accuracy, and is able to accurately predict the energetic ordering as well as the relative interaction energies of different isomers of water clusters.</div>

2021 ◽  
Author(s):  
Daniel Schmitt-Monreal ◽  
Christoph R. Jacob

<div>Fragmentation methods based on the many-body expansion offer an attractive approach for the quantum-chemical treatment of large molecular systems, such as molecular clusters and crystals. Conventionally, the many-body expansion is performed for the total energy, but such an energy-based many-body expansion often suffers from a slow convergence with respect to the expansion order. For systems that show strong polarization effects such as water clusters, this can render the energy-based many-body expansion infeasible. Here, we establish a density-based many-body expansion as a promising alternative approach. By performing the many-body expansion for the electron density instead of the total energy and inserting the resulting total electron density into the total energy functional of density-functional theory, one can derive a density-based energy correction, which in principle accounts for all higher order polarization effects. Here, we systematically assess the accuracy of such a density-based many-body expansion for test sets of water clusters. We show that already a density-based two-body expansion is able to reproduce interaction energies per fragment within chemical accuracy, and is able to accurately predict the energetic ordering as well as the relative interaction energies of different isomers of water clusters.</div>


2021 ◽  
Author(s):  
Daniel Schmitt-Monreal ◽  
Christoph R. Jacob

<div>Fragmentation methods based on the many-body expansion offer an attractive approach for the quantum-chemical treatment of large molecular systems, such as molecular clusters and crystals. Conventionally, the many-body expansion is performed for the total energy, but such an energy-based many-body expansion often suffers from a slow convergence with respect to the expansion order. For systems that show strong polarization effects such as water clusters, this can render the energy-based many-body expansion infeasible. Here, we establish a density-based many-body expansion as a promising alternative approach. By performing the many-body expansion for the electron density instead of the total energy and inserting the resulting total electron density into the total energy functional of density-functional theory, one can derive a density-based energy correction, which in principle accounts for all higher order polarization effects. Here, we systematically assess the accuracy of such a density-based many-body expansion for test sets of water clusters. We show that already a density-based two-body expansion is able to reproduce interaction energies per fragment within chemical accuracy, and is able to accurately predict the energetic ordering as well as the relative interaction energies of different isomers of water clusters.</div>


2018 ◽  
Vol 20 (35) ◽  
pp. 22987-22996 ◽  
Author(s):  
Samik Bose ◽  
Diksha Dhawan ◽  
Sutanu Nandi ◽  
Ram Rup Sarkar ◽  
Debashree Ghosh

A new machine learning based approach combining support vector regression (SVR) and many body expansion (MBE) that can predict the interaction energies of water clusters with high accuracy (for decamers: 2.78% of QM estimates).


2021 ◽  
Vol 23 (1) ◽  
pp. 233
Author(s):  
Małgorzata Domagała ◽  
Sílvia Simon and Marcin Palusiak

In the presented research, we address the original concept of resonance-assisted hydrogen bonding (RAHB) by means of the many-body interaction approach and electron density delocalization analysis. The investigated molecular patterns of RAHBs are open chains consisting of two to six molecules in which the intermolecular hydrogen bond stabilizes the complex. Non-RAHB counterparts are considered to be reference systems. The results show the influence of the neighbour monomers on the unsaturated chains in terms of the many-body interaction energy contribution. Exploring the relation between the energy parameters and the growing number of molecules in the chain, we give an explicit extrapolation of the interaction energy and its components in the infinite chain. Electron delocalization within chain motifs has been analysed from three different points of view: three-body delocalization between C=C-C, two-body hydrogen bond delocalization indices and also between fragments (monomers). A many-body contribution to the interaction energy as well as electron density helps to establish the assistance of resonance in the strength of hydrogen bonds upon the formation of the present molecular chains. The direct relation between interaction energy and delocalization supports the original concept, and refutes some of the criticisms of the RAHB idea.


2018 ◽  
Author(s):  
Francesco Paesani ◽  
Pushp Bajaj ◽  
Marc Riera

<div> <div> <div> <p>Despite the key role that ionic solutions play in several natural and industrial processes, a unified, molecular-level understanding of how ions affect the structure and dynamics of water across different phases remains elusive. In this context, computer simulations can provide new insights that are difficult, if not impossible, to obtain by other means. However, the predictive power of a computer simulation directly depends on the level of “realism” that is used to represent the underlying molecular interactions. Here, we report a systematic analysis of many-body effects in halide-water clusters and demonstrate that the recently developed MB-nrg full-dimensional many-body potential energy functions achieve high accuracy by quantitatively reproducing the individual terms of the many-body expansion of the interaction energy, thus opening the door to realistic computer simulations of ionic solutions. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Francesco Paesani ◽  
Pushp Bajaj ◽  
Marc Riera

<div> <div> <div> <p>Despite the key role that ionic solutions play in several natural and industrial processes, a unified, molecular-level understanding of how ions affect the structure and dynamics of water across different phases remains elusive. In this context, computer simulations can provide new insights that are difficult, if not impossible, to obtain by other means. However, the predictive power of a computer simulation directly depends on the level of “realism” that is used to represent the underlying molecular interactions. Here, we report a systematic analysis of many-body effects in halide-water clusters and demonstrate that the recently developed MB-nrg full-dimensional many-body potential energy functions achieve high accuracy by quantitatively reproducing the individual terms of the many-body expansion of the interaction energy, thus opening the door to realistic computer simulations of ionic solutions. </p> </div> </div> </div>


Author(s):  
Marc Riera ◽  
Eleftherios Lambros ◽  
Thuong T. Nguyen ◽  
Andreas W. Goetz ◽  
Francesco Paesani

<div> <div> <div> <p>Despite its apparent simplicity, water displays unique behavior across the phase diagram which is strictly related to the ability of the water molecules to form dense, yet dynamic, hydrogen- bond networks that continually fluctuate in time and space. The competition between different local hydrogen-bonding environments has been hypothesized as a possible origin of the anomalous properties of liquid water. Through a systematic application of the many-body expansion of the total energy, we demonstrate that the local structure of liquid water at room temperature is determined by a delicate balance between two-body and three-body energies, which is further modulated by higher-order many-body effects. Besides providing fundamental insights into the structure of liquid water, this analysis also emphasizes that a correct representation of two-body and three-body energies requires sub-chemical accuracy that is nowadays only achieved by many-body models rigorously derived from the many-body expansion of the total energy, which thus hold great promise for shedding light on the molecular origin of the anomalous behavior of liquid water. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Marc Riera ◽  
Eleftherios Lambros ◽  
Thuong T. Nguyen ◽  
Andreas W. Goetz ◽  
Francesco Paesani

<div> <div> <div> <p>Despite its apparent simplicity, water displays unique behavior across the phase diagram which is strictly related to the ability of the water molecules to form dense, yet dynamic, hydrogen- bond networks that continually fluctuate in time and space. The competition between different local hydrogen-bonding environments has been hypothesized as a possible origin of the anomalous properties of liquid water. Through a systematic application of the many-body expansion of the total energy, we demonstrate that the local structure of liquid water at room temperature is determined by a delicate balance between two-body and three-body energies, which is further modulated by higher-order many-body effects. Besides providing fundamental insights into the structure of liquid water, this analysis also emphasizes that a correct representation of two-body and three-body energies requires sub-chemical accuracy that is nowadays only achieved by many-body models rigorously derived from the many-body expansion of the total energy, which thus hold great promise for shedding light on the molecular origin of the anomalous behavior of liquid water. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document