scholarly journals Dendron-Polymer Hybrids as Tailorable Coronae of Single-Walled Carbon Nanotube

Author(s):  
Verena Wulf ◽  
Gadi Slor ◽  
Parul Rathee ◽  
Roey J. Amir ◽  
Gili Bisker

Single-walled carbon nanotubes (SWCNTs), non-covalently functionalized by synthetic polymers, find widespread applications including sensing and imaging. Identifying new amphiphiles with interchangeable building blocks that can form unique coronae around the SWCNT, customized for a specific application, is thus of great interest. We present polymer-dendron hybrids, composed of hydrophobic dendrons and hydrophilic polyethylene glycol (PEG), as amphiphilic macromolecules with high degree of structural freedom, for suspending SWCNTs in aqeous solution. Based on a set of four PEG-dendrons differing in their dendritic end-groups, we show thst differences in the chemical structure of the hydrophobic end-groups control the interactions of the PEG-dendrons with the SWCNT-surface. These interactions led to differences in the intrinsic near-infrared fluorescence emission of the SWCNTs and affected the PEG-dendron susceptibility to enzymatic degradation, which was monitored by the SWCNT fluorescent signal. Our findings open new avenues for rational design of SWCNT functionalization, and optical sensing of enzymatic activity<br>

2021 ◽  
Author(s):  
Verena Wulf ◽  
Gadi Slor ◽  
Parul Rathee ◽  
Roey J. Amir ◽  
Gili Bisker

Single-walled carbon nanotubes (SWCNTs), non-covalently functionalized by synthetic polymers, find widespread applications including sensing and imaging. Identifying new amphiphiles with interchangeable building blocks that can form unique coronae around the SWCNT, customized for a specific application, is thus of great interest. We present polymer-dendron hybrids, composed of hydrophobic dendrons and hydrophilic polyethylene glycol (PEG), as amphiphilic macromolecules with high degree of structural freedom, for suspending SWCNTs in aqeous solution. Based on a set of four PEG-dendrons differing in their dendritic end-groups, we show thst differences in the chemical structure of the hydrophobic end-groups control the interactions of the PEG-dendrons with the SWCNT-surface. These interactions led to differences in the intrinsic near-infrared fluorescence emission of the SWCNTs and affected the PEG-dendron susceptibility to enzymatic degradation, which was monitored by the SWCNT fluorescent signal. Our findings open new avenues for rational design of SWCNT functionalization, and optical sensing of enzymatic activity<br>


2018 ◽  
Author(s):  
Jackson Travis Del Bonis-O’Donnell ◽  
Rebecca Pinals ◽  
Sanghwa Jeong ◽  
Ami Thakrar ◽  
Russ Wolfinger ◽  
...  

AbstractGeneration, identification, and validation of optical probes to image molecular targets in a biological milieu remains a challenge. Synthetic molecular recognition approaches leveraging the intrinsic near-infrared fluorescence of single-walled carbon nanotubes is a promising approach for chronic biochemical imaging in tissues. However, generation of nanosensors for selective imaging of molecular targets requires a heuristic approach. Here, we present a chemometric platform for rapidly screening libraries of candidate single-walled carbon nanotube nanosensors against biochemical analytes to quantify fluorescence response to small molecules including vitamins, neurotransmitters, and chemotherapeutics. We further show this approach can be leveraged to identify biochemical analytes that selectively modulate the intrinsic near-infrared fluorescence of candidate nanosensors. Chemometric analysis thus enables identification of nanosensor-analyte ‘hits’ and also nanosensor fluorescence signaling modalities such as wavelength-shifts that are optimal for translation to biological imaging. Through this approach, we identify and characterize a nanosensor for the chemotherapeutic anthracycline doxorubicin, which provides an up to 17 nm fluorescence red-shift and exhibits an 8 µM limit of detection, compatible with peak circulatory concentrations of doxorubicin common in therapeutic administration. We demonstrate selectivity of this nanosensor over dacarbazine, a chemotherapeutic commonly co-injected with DOX. Lastly, we demonstrate nanosensor tissue compatibility for imaging of doxorubicin in muscle tissue by incorporating nanosensors into the mouse hindlimb and measuring nanosensor response to exogenous DOX administration. Our results motivate chemometric approaches to nanosensor discovery for chronic imaging of drug partitioning into tissues and towards real-time monitoring of drug accumulation.


RSC Advances ◽  
2019 ◽  
Vol 9 (48) ◽  
pp. 28135-28145
Author(s):  
Ahmed I. A. Abd El-Mageed ◽  
Takuji Ogawa

For the first time, using scanning probe microscopy, the supramolecular structures of terbium porphyrin double-decker complexes were observed on single-walled carbon nanotubes surfaces, where the molecules formed a well-ordered self-assembled array.


2018 ◽  
Vol 5 (1) ◽  
pp. 201-212 ◽  
Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

Abstract In this paper, Differential Quadrature Method (DQM) is applied to investigate free vibration of Single Walled Carbon Nanotubes (SWCNTs) with exponentially varying stiffness based on non-local Euler-Bernoulli beam theory. Application of DQ method in the governing differential equation converts the problem to a generalized eigenvalue problem and its solution gives frequency parameters. Convergence of the results show that DQM solutions converge fast. In this article, a detailed investigation has been reported and MATLAB code has been developed to analyze the numerical results for different scaling parameters as well as for four types of boundary conditions. Present results are compared with other available results and are found to be in good agreement.


2013 ◽  
Vol 8 (11) ◽  
pp. 873-880 ◽  
Author(s):  
Nicole M. Iverson ◽  
Paul W. Barone ◽  
Mia Shandell ◽  
Laura J. Trudel ◽  
Selda Sen ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Guiru Gu ◽  
Yunfeng Ling ◽  
Runyu Liu ◽  
Puminun Vasinajindakaw ◽  
Xuejun Lu ◽  
...  

We report an all-printed thin-film transistor (TFT) on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT) solution that is primarily consists of semiconducting carbon nanotubes (CNTs) with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) due to the special band structure and the one-dimensional (1D) quantum confined density of state (DOS) of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lukasz Przypis ◽  
Maciej Krzywiecki ◽  
Yoshiaki Niidome ◽  
Haruka Aoki ◽  
Tomohiro Shiraki ◽  
...  

AbstractSingle-walled carbon nanotubes (SWCNTs) have been modified with ester groups using typical organic radical chemistry. Consequently, traps for mobile excitons have been created, which enhanced the optical properties of the material. The proposed methodology combines the benefits of mainstream approaches to create luminescent defects in SWCNTs while it simultaneously avoids their limitations. A step change was achieved when the aqueous medium was abandoned. The selection of an appropriate organic solvent enabled much more facile modification of SWCNTs. The presented technique is quick and versatile as it can engage numerous reactants to tune the light emission capabilities of SWCNTs. Importantly, it can also utilize SWCNTs sorted by chirality using conjugated polymers to enhance their light emission capabilities. Such differentiation is conducted in organic solvents, so monochiral SWCNT can be directly functionalized using the demonstrated concept in the same medium without the need to redisperse the material in water.


Author(s):  
Taza Gul ◽  
Ramla Akbar ◽  
Zafar Zaheer ◽  
Iraj S Amiri

The mutual result of the magnetic field and Marangoni convection against the thin liquid film of Casson fluid, blood-based carbon nanotube nanofluid has been fruitfully discussed in this article. The influence of various model constraints is focused on velocity, heat transfer, pressure distribution, skin friction and Nusselt number through graphical illustration. In addition, we witness that the thermal field of liquid raises with the growing value of [Formula: see text] and this upsurge is more in single-walled carbon nanotubes and is more dominant than multi-walled carbon nanotubes. The controlling approach of the homotopy analysis method has been used for velocity and temperature distribution. For authentication, the achieved results have been associated with the numerical (ND-Solve) method and displayed. This investigation shows that the velocity profile in the case of Casson fluid single-walled carbon nanotube–blood nanofluid is comparatively less affected and the temperature field of single-walled carbon nanotube–blood nanofluid dominates multi-walled carbon nanotube–blood nanofluid.


Sign in / Sign up

Export Citation Format

Share Document