Fe, Ni-codoped W18O49 grown on nickel foam as bifunctional electrocatalyst for boosted water splitting

2021 ◽  
Author(s):  
Guojuan Hai ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Koji Kajiyoshi ◽  
Long Wang ◽  
...  

Designing cost-effective bifunctional catalysts with high-performance and durability is of great significance for the renewable energy systems. Herein, a typical Fe, Ni-codoped W18O49/NF was prepared via a simple solvothermal method....

2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


2018 ◽  
Author(s):  
Ammar H. A. Dehwah ◽  
Moncef Krarti

To meet the increasing energy demand and to shave the peak, the Kingdom of Saudi Arabia (KSA) is currently planning to invest more on renewable energy (RE) seeking diversity of energy resources. Through the integration of demand side management measures and renewable energy distributed generation (DG) systems, the study outlined in this paper aims at investigating the potential of hybrid renewable energy systems in supplying energy demands for residential communities in an oil-rich country. The residential community considered in this study, located in the eastern region of KSA, has an annual electrical usage of 1,174 GWh and an electrical peak load of 335 MW that are met solely by the grid. The results of the analyses indicated that the implementation of cost-effective energy efficiency measures (EEMs) reduced electricity usage by 38% and peak demand by 51% as well as CO2 emissions by 38%. While, the analysis of the hybrid systems showed that purchasing electricity from the grid is the best option with a levelized cost of energy (LCOE) of $0.1/kWh based on the current renewable energy market and economic conditions of KSA, RE systems can be cost-effective to meet the loads of the residential communities under specific electricity prices and capital cost levels. This study can assist KSA decision makers establish effective and targeted policies that can facilitate and promote renewable technologies.


2007 ◽  
Vol 12 (3) ◽  
pp. 253-260
Author(s):  
Sérgio Daher ◽  
Jürgen Schmid ◽  
Fernando Luiz Marcelo Antunes

2021 ◽  
Author(s):  
Xiaoqiang Du ◽  
Guangyu Ma ◽  
Xiaoshuang Zhang

The development of high-performance and cost-effective bifunctional water splitting catalysts are of enormous significance to the hydrogen production industry from water electrolysis. Herein, an in-situ Co and N co-doping method...


Nanoscale ◽  
2018 ◽  
Vol 10 (41) ◽  
pp. 19484-19491 ◽  
Author(s):  
Wen Ye ◽  
Xiaoyu Fang ◽  
Xuebo Chen ◽  
Dongpeng Yan

The development of bifunctional and stable non-noble metal electrocatalysts for the high-performance hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is very important and challenging for renewable energy.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050290
Author(s):  
Karan Sood ◽  
Eswaramoorthy Muthusamy

Hybrid Renewable Energy Systems (HRESs) are noteworthy devices for enhancement of reliability and performance compared to standalone systems, which are in a combination of more than one energy conversion system in a single unit. The recent developments in materials and technologies of HRESs are cost-effective and are more suitable power options for isolated rural areas. Many researchers have reported to have enhanced the performance of HRESs across India. Hence, this paper presents a comprehensive review of various HRESs that have been reported for their performance evaluation with respect to economic distance limit, techno-economic sensitivity, and optimum analysis. Also, different hybrid combinations are compared based on the factor of Net Present Cost (NPC), Cost of Energy (COE), renewable fraction, maximum renewable penetration, operational cost, and/or emission. Some case studies on various combinations of HRES for telecommunication application, rural electrification and water distillation are discussed and compared. It is concluded from the comprehensive review that there is scope for further studies on hybrid system across the country with adoption of different and newer combinations, materials and thermodynamic approaches. This paper will be helpful to researchers and scientists in understanding the state-of-the-art technologies in the hybrid system.


Clean Energy ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 807-822
Author(s):  
C Palanichamy ◽  
Tan Woan Wen ◽  
P Naveen

Abstract Recognizing the importance of electricity as a driver of rapid economic growth and poverty alleviation, India aims to provide access to all households by 2030. Despite the best efforts of state and federal governments to meet consumers’ electrical needs, budget constraints, inefficient operations and massive loan burdens have hampered their efforts. Aside from these concerns, rural India, which accounts for 65% of the population, is plagued by a slew of issues, including low electricity demand, a low load factor and the expectation of cheap electricity. These concerns bind the authorities’ hands, preventing them from moving forward. As a result, this project aims to model an autonomous microgrid system that integrates three potential renewable-energy systems, namely wind, sun and hydrokinetic, to provide electricity for a remote society. It starts with assessing the region’s electricity needs with its inhabitants. The HOMER Pro platform creates a cost-effective microgrid based on the demand estimate. The components of the microgrid include 6.4-kW small wind turbine (SWT) groups, 4.4-kW solar photovoltaic (PV) panels, a 5-kW hydrokinetic water turbine, battery storage and a converter. The project is unique in that it considers site-specific initial capital costs, replacement costs, and operation and maintenance costs of the renewable-energy systems, and it does not include any environmentally hazardous energy system. The successful optimization results in terms of levelized energy costs are $0.0538, $0.0614 and $0.0427/kWh for wind, solar and hydrokinetic components, respectively, without any environmental issues.


2015 ◽  
Vol 760 ◽  
pp. 147-152 ◽  
Author(s):  
Radu Saulescu ◽  
Mircea Neagoe ◽  
Codruta Jaliu ◽  
Olimpiu Munteanu

Mechanical transmissions are frequently used in renewable energy systems (RES), either as speed reducers in solar tracking systems (e.g. worm drive, planetary gear), or as speed increasers in small hydropower converters or wind turbines. Most of them are conventional transmissions characterized by large overall dimensions and/or low efficiencies; therefore, new mechanical transmissions with higher performances are highly investigated. The paper presents the development of an innovative chain planetary transmission for hydro/wind applications. The speed increaser transmission requires a well-defined transmission ratio according to the application (3 – 5 for hydro, 6 – 30 for wind), good efficiency, relative simple and compact structure, easy maintenance, and low-cost. The final proposed solution overcomes some limits of the RES transmissions, significantly increasing the efficiency while decreasing the system size and eliminating the chain pre-stressing. The steps of the product design process applied for innovative generation of high performance mechanical transmissions are shown in the Part I. The proposed chain planetary transmission integrated into a micro hydropower application is analyzed in the Part II: virtual prototyping, physical testing and optimization stages and results are detailed.


Sign in / Sign up

Export Citation Format

Share Document