scholarly journals Reinvestigation of the Synthesis of "Covalent-Assembly" Type Probes for Fluoride Ion Detection. Identification of Novel 7-(Diethylamino)coumarins with Aggregation-Induced Emission Properties

Author(s):  
Valentin QUESNEAU ◽  
Benoît ROUBINET ◽  
Pierre-Yves RENARD ◽  
Anthony ROMIEU

An unprecedented C-3 functionalization of 4-(diethylamino)salicylaldehyde through a Friedel-Crafts type alkylation reaction has been discovered during the synthesis of "covalent-assembly"-based fluorescent probes for detection of fluoride ions. The resulting Friedel-Crafts adduct was successfully used for the preparation of two novel 8-substituted 7-(diethylamino)coumarin dyes. The photophysical study of these fluorophores has enabled us to highlight their remarkable aggregation-induced emission (AIE) properties characterized by a yellow-orange emission of aggregates in water. Therefore, 4-(tert butyldimethylsilyloxy)benzyl substituent was identified as a novel AIE-active moiety which could be seen as a possible alternative to popular tetraphenylethylene (TPE).

2019 ◽  
Author(s):  
Valentin QUESNEAU ◽  
Benoît ROUBINET ◽  
Pierre-Yves RENARD ◽  
Anthony ROMIEU

An unprecedented C-3 functionalization of 4-(diethylamino)salicylaldehyde through a Friedel-Crafts type alkylation reaction has been discovered during the synthesis of "covalent-assembly"-based fluorescent probes for detection of fluoride ions. The resulting Friedel-Crafts adduct was successfully used for the preparation of two novel 8-substituted 7-(diethylamino)coumarin dyes. The photophysical study of these fluorophores has enabled us to highlight their remarkable aggregation-induced emission (AIE) properties characterized by a yellow-orange emission of aggregates in water. Therefore, 4-(tert butyldimethylsilyloxy)benzyl substituent was identified as a novel AIE-active moiety which could be seen as a possible alternative to popular tetraphenylethylene (TPE).


Author(s):  
Yanyu Qi ◽  
Xiaosong Cao ◽  
Yang Zou ◽  
Chuluo Yang

A aggregation-induced emission-characterized tetracoordinated organoboron complex-based probe for the turn-on detection of fluoride ion is reported.


2012 ◽  
Vol 2012 (13) ◽  
pp. 2535-2541 ◽  
Author(s):  
Lorena K. Calderón-Ortiz ◽  
Eric Täuscher ◽  
Erick Leite Bastos ◽  
Helmar Görls ◽  
Dieter Weiß ◽  
...  

2020 ◽  
Vol 24 (05n07) ◽  
pp. 929-937
Author(s):  
Ewa Jaworska ◽  
Fabrizio Caroleo ◽  
Corrado Di Natale ◽  
Krzysztof Maksymiuk ◽  
Roberto Paolesse ◽  
...  

We present here a new type of fluoride ion optode, constituted by a highly lipophilic PVDF porous membrane modified with a liquid receptor layer containing the emission-active Si corrole F[Formula: see text] selective ionophore. For the optimized composition of the receptor layer, in acidic solutions an increase of Si-corrole emission was observed by increasing fluoride ion concentration, a behavior different from most porphyrinoid-based optical sensors. An observed linear dependence of the Si corrole emission intensity (read at 635 nm) was within the range 10[Formula: see text] to 10[Formula: see text] M of fluoride ions.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3998 ◽  
Author(s):  
Rie Imataki ◽  
Yukari Shinonaga ◽  
Takako Nishimura ◽  
Yoko Abe ◽  
Kenji Arita

Especially in pediatric dentistry, prevention by the control of initial lesions prior to cavitation is very important, and application of a pit and fissure sealant is essential to achieve this. Numerous reports have suggested that resin-based sealants are inferior to sealants based on glass-ionomer cement (GIC), because of GIC’s many advantages, such as fluoride ion release properties and its good adhesion to tooth structures. However, the use of GIC is impeded due to its low flexural strength and fracture toughness. In this paper, we developed and characterized an apatite-ionomer cement (AIC) that incorporates hydroxyapatite (HAp) into the GIC; this development was aimed at not only reinforcing the flexural and compressive strength but also improving some functional properties for the creation of the material suitable for sealant. We examined the influence of differences in the compounding conditions of GIC powder, liquid, and HAp on flexural and compressive strengths, fracture toughness, fluoride ion release property, shear bond strength to bovine enamel, surface pH of setting cements, and acid buffer capability. These methods were aimed at elucidating the reaction mechanism of porous spherical-shaped HAp (HApS) in AIC. The following observations were deduced. (1) HAp can improve the mechanical strengths of AIC by strengthening the cement matrix. (2) The functional properties of AIC, such as acid buffer capability, improved by increasing the releasing amounts of various ions including fluoride ions. The novel AIC developed in this study is a clinically effective dental material for prevention and remineralization of tooth and initial carious lesion.


2020 ◽  
Vol 56 (92) ◽  
pp. 14463-14466
Author(s):  
William J. Tipping ◽  
Liam T. Wilson ◽  
Sonja K. Blaseio ◽  
Nicholas C. O. Tomkinson ◽  
Karen Faulds ◽  
...  

A simple ratiometric sensor based on Raman spectroscopy enables rapid fluoride ion detection in a paper-based assay using a portable spectrometer.


Sign in / Sign up

Export Citation Format

Share Document