scholarly journals The Ape Lottery: Chimpanzees Fail To Consider Spatial Information When Drawing Statistical Inferences

2021 ◽  
Vol 8 (3) ◽  
pp. 305-324
Author(s):  
Johanna Eckert ◽  
Hannes Rakoczy ◽  
Shona Duguid ◽  
Esther Herrmann ◽  
Josep Call

Humans and nonhuman great apes share a sense for intuitive statistics, making intuitive probability judgments based on proportional information. This ability is of tremendous importance, in particular for predicting the outcome of events using prior information and for inferring general regularities from limited numbers of observations. Already in infancy, humans functionally integrate intuitive statistics with other cognitive domains, rendering this type of reasoning a powerful tool to make rational decisions in a variety of contexts. Recent research suggests that chimpanzees are capable of one type of such cross-domain integration: The integration of statistical and social information. Here, we investigated whether apes can also integrate physical information into their statistical inferences. We tested 14 sanctuary-living chimpanzees in a new task setup consisting of two “gumball machine”-apparatuses that were filled with different combinations of preferred and non-preferred food items. In four test conditions, subjects decided which of two apparatuses they wanted to operate to receive a random sample, while we varied both the proportional composition of the food items as well as their spatial configuration above and below a barrier. To receive the more favorable sample, apes needed to integrate proportional and spatial information. Chimpanzees succeeded in conditions in which we provided them either with proportional information or spatial information, but they failed to correctly integrate both types of information when they were in conflict. Whether these limitations in chimpanzees' performance reflect true limits of cognitive competence or merely performance limitations due to accessory task demands is still an open question.

2018 ◽  
Vol 5 (9) ◽  
pp. 181025 ◽  
Author(s):  
Sarah Placì ◽  
Johanna Eckert ◽  
Hannes Rakoczy ◽  
Julia Fischer

Human infants, apes and capuchin monkeys engage in intuitive statistics: they generate predictions from populations of objects to samples based on proportional information. This suggests that statistical reasoning might depend on some core knowledge that humans share with other primate species. To aid the reconstruction of the evolution of this capacity, we investigated whether intuitive statistical reasoning is also present in a species of Old World monkey. In a series of four experiments, 11 long-tailed macaques were offered different pairs of populations containing varying proportions of preferred versus neutral food items. One population always contained a higher proportion of preferred items than the other. An experimenter simultaneously drew one item out of each population, hid them in her fists and presented them to the monkeys to choose. Although some individuals performed well across most experiments, our results imply that long-tailed macaques as a group did not make statistical inferences from populations of food items to samples but rather relied on heuristics. These findings suggest that there may have been convergent evolution of this ability in New World monkeys and apes (including humans).


2020 ◽  
Vol 39 (3) ◽  
pp. 3769-3781
Author(s):  
Zhisong Han ◽  
Yaling Liang ◽  
Zengqun Chen ◽  
Zhiheng Zhou

Video-based person re-identification aims to match videos of pedestrians captured by non-overlapping cameras. Video provides spatial information and temporal information. However, most existing methods do not combine these two types of information well and ignore that they are of different importance in most cases. To address the above issues, we propose a two-stream network with a joint distance metric for measuring the similarity of two videos. The proposed two-stream network has several appealing properties. First, the spatial stream focuses on multiple parts of a person and outputs robust local spatial features. Second, a lightweight and effective temporal information extraction block is introduced in video-based person re-identification. In the inference stage, the distance of two videos is measured by the weighted sum of spatial distance and temporal distance. We conduct extensive experiments on four public datasets, i.e., MARS, PRID2011, iLIDS-VID and DukeMTMC-VideoReID to show that our proposed approach outperforms existing methods in video-based person re-ID.


2020 ◽  
Vol 31 (1) ◽  
pp. 147-158
Author(s):  
Amanda E Hernan ◽  
J Matthew Mahoney ◽  
Willie Curry ◽  
Seamus Mawe ◽  
Rod C Scott

Abstract Spatial working memory (SWM) is a central cognitive process during which the hippocampus and prefrontal cortex (PFC) encode and maintain spatial information for subsequent decision-making. This occurs in the context of ongoing computations relating to spatial position, recall of long-term memory, attention, among many others. To establish how intermittently presented information is integrated with ongoing computations we recorded single units, simultaneously in hippocampus and PFC, in control rats and those with a brain malformation during performance of an SWM task. Neurons that encode intermittent task parameters are also well modulated in time and incorporated into a functional network across regions. Neurons from animals with cortical malformation are poorly modulated in time, less likely to encode task parameters, and less likely to be integrated into a functional network. Our results implicate a model in which ongoing oscillatory coordination among neurons in the hippocampal–PFC network describes a functional network that is poised to receive sensory inputs that are then integrated and multiplexed as working memory. The background temporal modulation is systematically altered in disease, but the relationship between these dynamics and behaviorally relevant firing is maintained, thereby providing potential targets for stimulation-based therapies.


Author(s):  
Stephen R. Ellis

Alternative formats for information displays are sometimes identified as being best suited for presentation of particular types of information. This view is assessed in terms of the role of noise and distortion in the presentation of spatial information. It is shown that introduction of redundant elements may compensate for weaknesses in different formats. Consequently, it is argued that the observed differences among formats may in fact arise from specific design decisions relating to the redundancy in the presented information rather than features inherent to the formats themselves.


Author(s):  
Z. Li

Abstract. Map is an effective communication means. It carries and transmits spatial information about spatial objects and phenomena, from map makers to map users. Therefore, cartography can be regarded as a communication system. Efforts has been made on the application of Shannon Information theory developed in digital communication to cartography to establish an information theory of cartography, or simply cartographic information theory (or map information theory). There was a boom during the period from later 1960s to early 1980s. Since later 1980s, researcher have almost given up the dream of establishing the information theory of cartography because they met a bottleneck problem. That is, Shannon entropy is only able to characterize the statistical information of map symbols but not capable of characterizing the spatial configuration (patterns) of map symbols. Fortunately, break-through has been made, i.e. the building of entropy models for metric and thematic information as well as a feasible computational model for Boltzmann entropy. This paper will review the evolutional processes, examine the bottleneck problems and the solutions, and finally propose a framework for the information theory of cartography. It is expected that such a theory will become the most fundamental theory of cartography in the big data era.


2014 ◽  
Vol 111 (12) ◽  
pp. 2614-2623 ◽  
Author(s):  
Anders S. Johansson ◽  
Karl-Gunnar Westberg ◽  
Benoni B. Edin

Although splitting of food items between the incisors often requires high bite forces, rarely do the teeth harmfully collide when the jaw quickly closes after split. Previous studies indicate that the force-velocity relationship of the jaw closing muscles principally explains the prompt dissipation of jaw closing force. Here, we asked whether people could regulate the dissipation of jaw closing force during food splitting. We hypothesized that such regulation might be implemented via differential recruitment of masseter muscle portions situated along the anteroposterior axis because these portions will experience a different shortening velocity during jaw closure. Study participants performed two different tasks when holding a peanut-half stacked on a chocolate piece between their incisors. In one task, they were asked to split the peanut-half only (single-split trials) and, in the other, to split both the peanut and the chocolate in one action (double-split trials). In double-split trials following the peanut split, the intensity of the tooth impact on the chocolate piece was on average 2.5 times greater than in single-split trials, indicating a substantially greater loss of jaw closing force in the single-split trials. We conclude that control of jaw closing force dissipation following food splitting depends on task demands. Consistent with our hypothesis, converging neurophysiological and morphometric data indicated that this control involved a differential activation of the jaw closing masseter muscle along the anteroposterior axis. These latter findings suggest that the regulation of jaw closing force after sudden unloading of the jaw exploits masseter muscle compartmentalization.


2021 ◽  
Vol 9 ◽  
Author(s):  
Scarlett R. Howard ◽  
Adrian G. Dyer ◽  
Jair E. Garcia ◽  
Martin Giurfa ◽  
David H. Reser ◽  
...  

Angiosperms have evolved to attract and/or deter specific pollinators. Flowers provide signals and cues such as scent, colour, size, pattern, and shape, which allow certain pollinators to more easily find and visit the same type of flower. Over evolutionary time, bees and angiosperms have co-evolved resulting in flowers being more attractive to bee vision and preferences, and allowing bees to recognise specific flower traits to make decisions on where to forage. Here we tested whether bees are instinctively tuned to process flower shape by training both flower-experienced and flower-naïve honeybee foragers to discriminate between pictures of two different flower species when images were either normally configured flowers or flowers which were scrambled in terms of spatial configuration. We also tested whether increasing picture contrast, to make flower features more salient, would improve or impair performance. We used four flower conditions: (i) normally configured greyscale flower pictures, (ii) scrambled flower configurations, (iii) high contrast normally configured flowers, and (iv) asymmetrically scrambled flowers. While all flower pictures contained very similar spatial information, both experienced and naïve bees were better able to learn to discriminate between normally configured flowers than between any of the modified versions. Our results suggest that a specialisation in flower recognition in bees is due to a combination of hard-wired neural circuitry and experience-dependent factors.


2020 ◽  
Author(s):  
Edward Heywood-Everett ◽  
Daniel H Baker ◽  
Tom Hartley

There are at least two distinct ways in which the brain encodes spatial information: in egocentric representations locations are encoded relative to the observer, whereas in allocentric representations locations are encoded relative to the environment. Both inform spatial memory, but the extent to which they influence behaviour varies depending on the task. In the present study, two preregistered experiments used a psychophysical approach to measure the precision of spatial memory while varying ego- and allocentric task demands. Participants were asked to detect the changed location of one of four objects when seen from a new viewpoint (rotated by 0°, 5°, 15°, 45° or 135°). Experiment 1 used a Same/Different task and Experiment 2 used a 2AFC task. Psychophysical thresholds were calculated, showing that in both experiments, spatial change detection thresholds showed a monotonic but non-linear increase as viewpoint change increased. This was consistent with a preregistered model including distinct parameters corresponding to egocentric and allocentric contributions that change lawfully as a function of viewpoint shift. Our results provide a clearer understanding of how underlying memory representations interact to inform our spatial knowledge of the environment.


2021 ◽  
Author(s):  
Vladislav Ayzenberg ◽  
Samoni Nag ◽  
Amy Krivoshik ◽  
Stella F. Lourenco

To accurately represent an object, it must be individuated from the surrounding objects and then classified with the appropriate category or identity. To this end, adults flexibly weight different visual cues when perceiving objects. However, less is known about whether, and how, the weighting of visual object information changes over development. The current study examined how children use different types of information— spatial (e.g., left/right location) and featural (e.g., color)—in different object tasks. In Experiment 1, we tested whether infants and preschoolers extract both the spatial and featural properties of objects, and, importantly, how these cues are weighted when pitted against each other. We found that infants relied primarily on spatial cues and neglected featural cues. By contrast, preschoolers showed the opposite pattern of weighting, placing greater weight on featural information. In Experiment 2, we tested the hypothesis that the developmental shift from spatial to featural weighting reflects a shift from a priority on object individuation (how many objects) in infancy to object classification (what are the objects) at preschool age. Here, we found that preschoolers weighted spatial information more than features when the task required individuating objects without identifying them, consistent with a specific role for spatial information in object individuation. We discuss the relevance of spatial-featural weighting in relation to developmental changes in children’s object representations.


2020 ◽  
Vol 48 (18) ◽  
pp. e107-e107 ◽  
Author(s):  
Tamim Abdelaal ◽  
Soufiane Mourragui ◽  
Ahmed Mahfouz ◽  
Marcel J T Reinders

Abstract Single-cell technologies are emerging fast due to their ability to unravel the heterogeneity of biological systems. While scRNA-seq is a powerful tool that measures whole-transcriptome expression of single cells, it lacks their spatial localization. Novel spatial transcriptomics methods do retain cells spatial information but some methods can only measure tens to hundreds of transcripts. To resolve this discrepancy, we developed SpaGE, a method that integrates spatial and scRNA-seq datasets to predict whole-transcriptome expressions in their spatial configuration. Using five dataset-pairs, SpaGE outperformed previously published methods and showed scalability to large datasets. Moreover, SpaGE predicted new spatial gene patterns that are confirmed independently using in situ hybridization data from the Allen Mouse Brain Atlas.


Sign in / Sign up

Export Citation Format

Share Document