scholarly journals In-vitro antibacterial activity of sequential crude extracts from Datura stramonium seeds

Author(s):  
Powar Priyatama V ◽  
Powar Trupti A

The growing phenomenon of antibiotic resistance, particularly to pathogenic microorganisms, in current medicine, has directed the concern of scientists for finding novel antimicrobial agents from plant origin with negligible side effect. The present study was aimed to phytochemical investigation and antimicrobial activity of seed extract of Datura stramonium in sequentially with different organic solvents. For this, antimicrobial properties were tested against bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia and Bacillus subtilis by cup plate method. Among the tested bacterial Klebsiella pneumoniae was the most inhibited majorly with the chloroform extract. Datura stramonium chloroform seed extract produced maximum zone of inhibition 26 mm against Klebsiella pneumoniae and 12 mm against Bacillus subtilis and 13 mm against Escherichia coli. Datura Stramonium methanol seed extract produced maximum zone of inhibition 27 mm against Pseudomonas aeruginosa and 15 mm against Bacillus subtilis, 14 mm against Staphylococcus aureus and 19 mm against Escherichia coli. Datura stramonium petroleum ether seed extract produced 16 mm zone of inhibition against Escherichia coli. Datura stramonium aqueous seed extract exhibits 24 mm zone of inhibition against Bacillus subtilis. All the experienced solvent extracts showed potential antimicrobial activity Index against various tested microorganisms. Owning to the results, it can be concluded that the extracts of the Datura stramonium can be used to design different herbal antimicrobial agents.


Medicina ◽  
2008 ◽  
Vol 44 (12) ◽  
pp. 977 ◽  
Author(s):  
Alvydas Pavilonis ◽  
Algirdas Baranauskas ◽  
Ligita Puidokaitė ◽  
Žaneta Maželienė ◽  
Arūnas Savickas ◽  
...  

Objective. To evaluate the antimicrobial activity of soft and purified propolis extracts. Study object and methods. Antimicrobial activity of soft and purified propolis extracts was determined with reference cultures of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035, and fungus Candida albicans ATCC 60193. Microbiological tests were performed under aseptic conditions. Minimum inhibitory concentration (MIC) – the highest dilution of preparation (the lowest concentration of preparation) that suppresses growth of reference microorganisms – was determined. Results. Concentration of phenolic compounds in soft propolis extract that possesses antimicrobial activity against gram-positive (Staphylococcus aureus, Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis) is 0.587±0.054 mg and 0.587±0.054–0.394±0.022 mg (P>0.05) and in purified propolis extract – 0.427±0.044 mg and 0.256±0.02 mg (P>0.05). Klebsiella pneumoniae is most resistant to soft propolis extract when the concentration of phenolic compounds is 1.119± 0.152 mg and to purified propolis extract when the concentration of phenolic compounds is 1.013±0.189 mg (P>0.05). Spore-forming Bacillus subtilis bacteria are more sensitive to soft and purified propolis extracts when the concentration of phenolic compounds is 0.134±0.002 mg and 0.075±0.025 mg, respectively, and Bacillus cereus – when the concentration is 0.394±0.022 mg and 0.256±0.02 mg (P>0.05). Sensitivity of fungus Candida albicans to soft and purified propolis extracts is the same as Bacillus subtilis. Encapsulated bacterium Klebsiella pneumoniae is most resistant to antimicrobial action of soft and purified propolis extracts as compared with gram-positive Staphylococcus aureus and Enterococcus faecalis bacteria (P<0.05), gram-negative Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis (P<0.05), sporeforming Bacillus subtilis and Bacillus cereus bacteria (P<0.05), and fungus Candida albicans (P<0.05). There is no statistically significant difference between antimicrobial effect of soft propolis extract and purified propolis extract on gram-positive bacteria, gram-negative bacteria, spore-forming bacteria, encapsulated bacteria, and Candida fungus. Conclusions. Soft and purified propolis extracts possess antimicrobial activity. They could be recommended as natural preservatives in the manufacture of pharmaceutical products.



Medicina ◽  
2011 ◽  
Vol 47 (3) ◽  
pp. 24 ◽  
Author(s):  
Vilma Jurkštienė ◽  
Alvydas Pavilonis ◽  
Daiva Garšvienė ◽  
Algirdas Juozulynas ◽  
Laimutė Samsonienė ◽  
...  

The aim of the study was to determine antimicrobial activity of rhaponticum and shrubby cinquefoil extracts. Material and Methods. Ethanol extract from the leaves of rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.) was produced at the Department of Food Technology, Kaunas University of Technology. The antimicrobial activity of the viscous extract or rhaponticum and shrubby cinquefoil was evaluated using standard microorganism cultures (bacteria Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035 and fungi Candida albicans ATCC 60193). The minimum inhibitory concentration (MIC) of the examined preparations was determined. Results. Both studied preparations – rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.) – demonstrated similar antimicrobial activity. The highest sensitivity to the studied preparations was observed in microbes with eukaryotic cell structure: Candida albicans, which is a fungus, and a spore-forming prokaryotic bacterium, Bacillus cereus. The highest resistance was observed in Escherichia coli and Klebsiella pneumoniae. Conclusions. The studied preparations – viscous extracts of rhaponticum and shrubby cinquefoil – are substances with antimicrobial activity against gram-positive (Staphylococcus aureus and Enterococcus faecalis) and gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis) bacteria, spore-forming bacteria (Bacillus subtilis and Bacillus cereus), and fungi (Candida albicans).



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
B. A. Baviskar ◽  
S. S. Khadabadi ◽  
S. L. Deore

A new series ofN-{4-methyl-5-[4-(4-oxo-2-phenyl(1,3-thiazolidin-3-yl)]-5-sulfanyl(1,2,4-triazol-3-yl)-1,3-thiazol-2-yl }acetamide (7a-l) was synthesized in order to determine their antimicrobial activity and feasible structure–activity relationships. The compounds were synthesized in good yield and the structures of all newly synthesized compounds were established on the basis of their IR,1HNMR, and elemental analysis. The synthesized compounds were testedin vitroantibacterial activity againstStaphylococcus aureus,Escherichia coli,Pseudomonas aeruginosaandSalmonella typhiand antifungal activity againstAspergillus niger,Candida albicansby measuring the zone of inhibition in mm.



2020 ◽  
Vol 38 ◽  
Author(s):  
K. WAHEED ◽  
S.K. MUHAMMAD ◽  
A. SHOMAILA ◽  
Z. MUHAMMAD ◽  
U. IZHAR ◽  
...  

ABSTRACT: Medicinal Plants have been used throughout the world by human beings as a drug and remedies for various diseases since time immemorial. A study was planned to count into the antimicrobial activity and phytochemical screening of Euphorbia helioscopia. The plants were gathered and tested against some standard strains and some human pathogenic microorganisms i.e Escherichia coli, Bacillus Subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa and three fungal strain Trichoderma, R hizopus nigricans, Aspergillus niger. The concentrations of extracting samples (500 and 1,000 mg mL-1) were used against pathogens. Ciprofloxacin was used as positive control in case of bacterial strains and Colfrimazol was used against the fungal strain while dimethyl sulfoxide as negative control. The outcomes indicated that the positive wells potency of Water extract had a 36 mm diameter of zone of inhibition against Escherichia coli and ethanol extract at 1,000 mg mL-1 had maximum (34 mm) zone of inhibition against Bacillus subtilus (36 mm) zone of inhibition against Klebsiella pneumonia and 33 mm of zone of inhibition against Trichoderma harzianum. Likewise, water extract at a concentration of 1,000 mg mL-1 resulted highest value of zone of inhibition (36 mm) against Staphylococcus aureus, a zone of inhibition ( mm) against Salmonella typhi, 36 mm zone of inhibition against Pseudomonas aeruginosa, (32 mm) zone of inhibition against Rhizopus nigricans, a 34 mm zone of inhibition against Acremonium and (34 mm) zone of inhibition against Aspergillus niger. The most susceptible bacteria were K. pneumonia and Bacillus subtilis, while E. coli was the most resistant bacteria and showed zone of inhibition. The ethanolic extract had tannins, lipid, total proteins, carbohydrates, flavonoids, Alkaloid and polyphenolics.



2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300
Author(s):  
Daniyar Sadyrbekov ◽  
Timur Saliev ◽  
Yuri Gatilov ◽  
Ivan Kulakov ◽  
Roza Seidakhmetova ◽  
...  

A cyclopropane derivative of limonene, (1 S, 4 S, 6 R)-7,7-dichloro-4-[(1 S)-2,2-dichloro-1-methylcyclopropyl]-1-methylbicyclo [4.1.0] heptane (compound 2), was synthesized and its structure was determined by NMR and X-ray crystallographic methods. In addition, an antimicrobial activity of the compound against Gram-positive ( Staphylococcus aureus, Bacillus subtilis) and Gram-negative ( Escherichia coli, Pseudomonas aeruginosa) bacterial strains was also scrutinized.



2016 ◽  
Vol 33 (3) ◽  
pp. 140-145
Author(s):  
Mst Laila Akter Banu ◽  
AKM Bashar ◽  
Md Mujibur Rahman Howlader ◽  
Md Shamsul Alam ◽  
Md Ashraf Hussain

Microorganisms, usually from the dental caries, are the main sources of diseases in dental pulp (root canals) and periapical region. Facultative bacteria and fungi have been identified in therapy resistant persistent endodontic infection. The objectives of this study was to evaluate the antimicrobial efficacy of Mineral Tri Oxide Aggregate (MTA) against therapy resistant endodontic microorganisms. The efficacy of MTA was also compared with that of calcium hydroxide. Six standard bacterial stains were used: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, bacillus subtilis, Candida albicans and Enterococcus faecalis. The agar diffusion method on Muller- Hilton media was employed. The plates containing media were inoculated with the specified bacterial suspensions. Two standard holes were prepared on each microorganism inoculated plate with a copper puncher and one hole was completely filled with MTA & the other with Ca (OH)2 . The plates were then kept at environmental temperature for one hour to ensure prediffusion and then incubated at 370C for 24 hours. After 24 hours, the diameters of inhibition zones were measured. Tests were replicated for thirty times for each sample and mean values were taken. Zone of inhibition as measured for MTA and Ca (OH)2 were statistically analyzed with Student’s t-Test and Post Hoc Games Howell Test and were presented as mean ± SD to compare of efficacy of MTA and calcium hydroxide on different microorganisms. Both MTA and Ca(OH)2 were found to produce zone of inhibition against Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), , Bacillus subtilis (BTCC 17 ), and Candida albicans (BTCC 493). MTA showed highest activity against S. aureus and lowest activity against P. aeruginosa which was similar to the activity range of Ca (OH)2 against the mentioned organisms. But both of them failed to produce any activity against E. coli and. E. faecalis. MTA was found to produce a lower efficacy than Ca (OH)2 while comparing the zone of inhibition between them and statistically it was significant. Mineral Tri Oxide Aggregate (MTA) showed antimicrobial efficacy against some therapy resistant microorganisms but it did not show antimicrobial efficacy against Escherichia coli and Enterococcus faecalis. MTA was found to produce a lower antimicrobial efficacy than Ca (OH)2.J Bangladesh Coll Phys Surg 2015; 33(3): 140-145



2003 ◽  
Vol 58 (11-12) ◽  
pp. 850-854 ◽  
Author(s):  
Ayşen Özdemir Türk ◽  
Meral Yılmaz ◽  
Merih Kıvanç ◽  
Hayrettin Türk

Abstract In this study, the antimicrobial activity of the acetone, diethyl ether and ethanol extracts of the lichen Cetraria aculeata has been investigated. The extracts were tested against twelve bacteria and eight fungi and found active against Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, Proteus vulgaris, Streptococcus faecalis, Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Listeria monocytogenes. No antimicrobial activity against the fungi was detected. It was determined that only one substance in the extracts has antimicrobial activity and it was characterized as protolichesterinic acid. The MICs of the extracts and protolichesterinic acid were also determined.



2022 ◽  
Vol 11 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Iryna Myrko ◽  
Taras Chaban ◽  
Vasyl Matiychuk

A series of some new pyrazole-substituted 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines was synthesized in this study. The structures of target substances were confirmed by using 1H and 13С NMR spectroscopy, mass spectrometry and elemental analysis. The synthesized compounds have been evaluated for antimicrobial activity against five bacterial strains (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus) and two fungal strains (Candida albicans and Cryptococcus neoformans). The antimicrobial screening studies of synthesized substances established that 2 of 12 compounds show pronounced antibacterial activity against the strain Staphylococcus aureus.



2005 ◽  
Vol 60 (1-2) ◽  
pp. 35-38 ◽  
Author(s):  
Meral Yılmaz ◽  
Turgay Tay ◽  
Merih Kıvanç ◽  
Hayrettin Türk ◽  
Ayşen Özdemir Türk

The antimicrobial activity and the MIC values of the diethyl ether, acetone, chloroform, petroleum ether, and ethanol extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent have been investigated against some microorganisms. At least one of the extracts or 3-hydroxyphysodic acid showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Proteus vulgaris, Salmonella typhimurium, Staphylococcus aureus, Streptococcus faecalis, and Candida albicans. No antifungal activity of the extracts has been observed against ten filamentous fungi.



2021 ◽  
Vol 5 (4) ◽  
pp. 220-227
Author(s):  
Oksana Mykchaylova ◽  
Nataliia Poyedіnok

Background. According to the World Health Organization antibiotic resistance is among the top ten threats to human health, food safety and development. Today antibiotic resistance has reached alarmingly high levels all over the world. Meanwhile, the increase in the synthetic drugs' production has led to the pathogenic mycobiota's rapid adaptation to the created chemicals, which have a narrow focus of application. That is why in modern biotechnology and pharmacology much attention is paid to natural producers of biologically active compounds, in particular – to xylotrophic fungi. It has been experimentally proven that the xylotrophic macromycete Fomitopsis officinalis or tinder fungus can be considered to be a promising producer of pharmacological substances with a broad spectrum of action. Studies of active metabolites, contained in the mycelial mass, culture fluid of the medicinal xylotrophic macromycete F. officinalis, and determination of their biological action remain relevant. Objective. The objective was to determine the antimicrobial activity of culture fluid and mycelial mass of F. officinalis different strains from the mushrooms collection (IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany, NAS of Ukraine) against gram-negative and gram-positive bacteria species. Methods. An in vitro study of the antimicrobial activity of ethyl acetate extracts of culture fluid and aqueous-ethyl extracts of mycelial mass for F. officinalis strains IBK-5004, IBK-2497, IBK-2498 against gram-positive Staphylococcus aureus (B-918), Bacillus subtilis (В-901) and gram-negative Escherichia coli (B-906), Bacillus subtilis (B-900), Klebsiella pneumoniae (M-123) bacteria by disc-diffusion method was conducted. Results. High antimicrobial activity of tinder fungus culture fluid and mycelial mass extracts against Staphylococcus aureus was established after the 21st day of cultivation, while on the 28th day the zone of growth retardation was maximal (15–25 mm). The highest indices were recorded in F. officinalis IBK-5004 (20–25 mm) and IBK-2498 (20–24 mm) strains. Antimicrobial activity against Klebsiella pneumoniae in culture fluid extracts was manifested on the 21st and 28th days of cultivation. The highest antimicrobial activity against Klebsiella pneumoniae was observed in the culture fluid of the strain F. officinalis IBK-5004, the diameter of the growth retardation zone was 18 mm on the 28th day of cultivation. Mycelial mass's extracts showed moderate activity on the 14th day of cultivation (7-8 mm); maximal activity was recorded on the 28th day (12–22 mm). The most active strain was Fomitopsis officinalis IBK-2498. No antimicrobial activity against test organisms was detected in the following studied strains: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis. Conclusions. It has been established that the mycelial mass and culture fluid extracts of F. officinalis IBK-5004, IBK-2497, IBK-2498 strains have high antimicrobial activity against Staphylococcus aureus and moderate antimicrobial activity against Klebsiella pneumoniae on the 21st and 28th day of cultivation.



Sign in / Sign up

Export Citation Format

Share Document