scholarly journals RESEARCH OF AlO и Al NANOPOWDER FORMATION PROCESSES IN PLASMA UNDER THE INFLUENCE OF DEFOCUSED DUAL LASER PULSES ON ALUMINUM IN THE AIR ATMOSPHERE

Author(s):  
Ходор Баззал ◽  
Евгений Семенович Воропай ◽  
Наталья Анатольевна Алексеенко ◽  
Максим Николаевич Коваленко ◽  
Ngoc H. Trinh ◽  
...  

Изучено влияние величины и типа расфокусировки сдвоенных лазерных импульсов на целенаправленное формирование компонентного и зарядового состава лазерной плазмы при воздействии сдвоенных лазерных импульсов на мишень из алюминиевого сплава АД1 (спектрометр LSS-1). Показано, что при расфокусировке более +1 мм интенсивность линии ионов Al III увеличивается в несколько раз в сравнении с нулевой расфокусировкой, интенсивность линий ионов Al II, N II также более менее монотонно увеличивается. Одновременно с этим интенсивность полос AlO практически становится равным нулю. При значении величины расфокусировки 1 мм проведены исследование процессов образования смешанных нанопорошков AlO и Al при воздействии последовательных серий сдвоенных лазерных импульсов энергией 53 мДж и меж-импульсным интервалом 10 мкс на алюминиевую мишень, помещенную в закрытую стеклянную прямоугольную кювету. Размер первичных частиц AlOоцененный с помощью электронной микроскопии высокого разрешения, преимущественно составил 30 - 40 нм, а Al - 45 - 60 нм. Частицы собраны в агломераты. The influence of the magnitude and type of defocusing of twin laser pulses on the purposeful formation of the component and charge composition of laser plasma under the influence of twin laser pulses on a target made of aluminum alloy AD1 (LSS-1 spectrometer) has been studied. It is shown that when defocusing is more than 1 mm, the intensity of the ion line Al III increases several times in comparison with zero defocusing, the intensity of the ion lines Al II, N II also increases more or less monotonously. At the same time, the intensity of the bands AlO practically becomes zero. At the 1 mm defocusing value, the processes of formation of mixed nanopowders were studied and, under the influence of successive series of double laser pulses with the energy of 53 mJ and the inter-pulse interval of the iss on an aluminum target placed in a closed rectangular glass cuvette, the size of primary Al Oparticles estimated using high-resolution electron microscopy was mainly 30 - 40 nm, and Al -45 - 60 nm. The particles are collected into agglomerates.

Author(s):  
Ходор Баззал ◽  
Наталья Анатольевна Алексеенко ◽  
Евгений Семенович Воропай ◽  
Максим Николаевич Коваленко ◽  
Мария Петровна Патапович ◽  
...  

Проведено исследование процессов образования нанопорошков AlO и AlN при воздействии сдвоенных лазерных импульсов энергией 52 мДж и между импульсным интервалом 10 мкс на алюминиевую мишень, помещенную в закрытую стеклянную прямоугольную кювету, в зависимости от количества импульсов. Установлено, что наибольшая интенсивность полос субоксида AlO и молекул AlN наблюдается при 40 - 50 последовательных сдвоенных импульсов в серии. Размер первичных частиц, оцененный с помощью электронной микроскопии высокого разрешения, преимущественно составил 30 - 40 нм, частицы собраны в агломераты. Методом комбинационного рассеяния показана возможность получения активных форм оксидов алюминия и продуктов взаимодействия их с кислородом и азотом воздуха в лазерной плазме, осаждаемых на стеклянную поверхность. A study of the AlO and AlN nanopowder formation under the influence of twin laser pulses with an energy of 52 mJ and between the pulse interval of 10 microseconds on an aluminum target placed in a closed glass rectangular box, depending on the number of pulses. It was found that the highest intensity of the bands of AlO suboxide and AlN molecules is observed at 40 - 50 consecutive double pulses in a series. The size of the primary particles estimated using the high-resolution electron microscopy was mainly 30 - 40 nm, the particles were collected in agglomerates. The possibility of obtaining active forms of aluminum oxides and products of their interaction with oxygen and air nitrogen in a laser plasma deposited on a glass surface is shown by RAMAN methods.


Author(s):  
Ходор Баззал ◽  
Наталья Анатольевна Алексеенко ◽  
Евгений Семенович Воропай ◽  
Максим Николаевич Коваленко ◽  
Ngoc H. Trinh ◽  
...  

Проведено исследование процессов образования оксидированных нанопорошков Al в зависимости от количества импульсов при воздействии сдвоенных лазерных импульсов энергией 52 мДж и меж-импульсным интервалом 10 мкс на алюминиевую мишень, помещенную в закрытую стеклянную прямоугольную кювету. Установлено, что наибольшая интенсивность линий ионов Al(III) наблюдается при малом, порядка 15 импульсов, количестве последовательных сдвоенных импульсов в серии. Размер первичных частиц, оцененный с помощью электронной микроскопии высокого разрешения, преимущественно составил 50 - 60 нм, частицы собраны в агломераты. The processes of formation of oxidized nanopowders depending on the number of pulses were studied when double laser pulses with an energy of 52 mJ and an interpulse interval of 10 microseconds were applied to an aluminum target placed in a closed rectangular glass cuvette. It was found that the highest intensity of the Al III ion lines is observed at a small, about 15 pulses, consecutive double pulses in a series. The size of primary particles estimated by high-resolution electron microscopy was mainly 50 - 60 nm, and the particles were collected in agglomerates.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
J. A. Hugo ◽  
V. A. Phillips

A continuing problem in high resolution electron microscopy is that the level of detail visible to the microscopist while he is taking a picture is inferior to that obtainable by the microscope, readily readable on a photographic emulsion and visible in an enlargement made from the plate. Line resolutions, of 2Å or better are now achievable with top of the line 100kv microscopes. Taking the resolution of the human eye as 0.2mm, this indicates a need for a direct viewing magnification of at least one million. However, 0.2mm refers to optimum viewing conditions in daylight or the equivalent, and certainly does not apply to a (colored) image of low contrast and illumination level viewed on a fluorescent screen through a glass window by the dark-adapted eye. Experience indicates that an additional factor of 5 to 10 magnification is needed in order to view lattice images with line spacings of 2 to 4Å. Fortunately this is provided by the normal viewing telescope supplied with most electron microscopes.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Author(s):  
N. Tempel ◽  
M. C. Ledbetter

Carbon films have been a support of choice for high resolution electron microscopy since the introduction of vacuum evaporation of carbon. The desirable qualities of carbon films and methods of producing them has been extensively reviewed. It is difficult to get a high yield of grids by many of these methods, especially if virtually all of the windows must be covered with a tightly bonded, quality film of predictable thickness. We report here a method for producing carbon foils designed to maximize these attributes: 1) coverage of virtually all grid windows, 2) freedom from holes, wrinkles or folds, 3) good adhesion between film and grid, 4) uniformity of film and low noise structure, 5) predictability of film thickness, and 6) reproducibility.Our method utilizes vacuum evaporation of carbon from a fiber onto celloidin film and grid bars, adhesion of the film complex to the grid by carbon-carbon contact, and removal of the celloidin by acetone dissolution. Materials must be of high purity, and cleanliness must be rigorously maintained.


Author(s):  
J. C. Wheatley ◽  
J. M. Cowley

Rare-earth phosphates are of particular interest because of their catalytic properties associated with the hydrolysis of many aromatic chlorides in the petroleum industry. Lanthanum phosphates (LaPO4) which have been doped with small amounts of copper have shown increased catalytic activity (1). However the physical and chemical characteristics of the samples leading to good catalytic activity are not known.Many catalysts are amorphous and thus do not easily lend themselves to methods of investigation which would include electron microscopy. However, the LaPO4, crystals are quite suitable samples for high resolution techniques.The samples used were obtained from William L. Kehl of Gulf Research and Development Company. The electron microscopy was carried out on a JEOL JEM-100B which had been modified for high resolution microscopy (2). Standard high resolution techniques were employed. Three different sample types were observed: 669A-1-5-7 (poor catalyst), H-L-2 (good catalyst) and 27-011 (good catalyst).


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
Z.M. Wang ◽  
J.P. Zhang

High resolution electron microscopy reveals that antiphase domain boundaries in β-Ni3Nb have a hexagonal unit cell with lattice parameters ah=aβ and ch=bβ, where aβ and bβ are of the orthogonal β matrix. (See Figure 1.) Some of these boundaries can creep “upstairs” leaving an incoherent area, as shown in region P. When the stepped boundaries meet each other, they do not lose their own character. Our consideration in this work is to estimate the influnce of the natural misfit δ{(ab-aβ)/aβ≠0}. Defining the displacement field at the boundary as a phase modulation Φ(x), following the Frenkel-Kontorova model [2], we consider the boundary area to be made up of a two unit chain, the upper portion of which can move and the lower portion of the β matrix type, assumed to be fixed. (See the schematic pattern in Figure 2(a)).


Sign in / Sign up

Export Citation Format

Share Document