scholarly journals ROUGHNESS AND STRUCTURE OF InGaAsN THIN FILMS ON Si

Author(s):  
Олег Васильевич Девицкий

Методом импульсного лазерного напыления в атмосфере аргоно-азотной газовой смеси из мишени InGaAs впервые были получены тонкие пленки InGaAsN на подложках GaAs и Si. Мишень lnGaAs формировалась методом одноосного прессования из порошков GaAs и lnAs. Методами атомно силовой микроскопии и рентгеновской дифракции исследованы морфология поверхности и структура данных тонких пленок. Показано, что пленки InGaAsN на Si имеют средний размер кристалла 0,93 нм, а пленки и InGaAsN на GaAs - 0,99 нм. Определено, что уменьшение давления аргоно-азотной смеси при импульсном лазерном напылении тонких пленок InGaAsN на подложках GaAs и Si приводит к снижению значения среднеквадратичной шероховатости поверхности. Наименьшую среднеквадратическую шероховатость равную 0,25 нм имела тонкая пленка InGaAsN на подложке GaAs, полученная в вакууме, наибольшую среднеквадратическую шероховатость имела тонкая пленка InGaAsN на подложке Si, полученная при давления аргоно-азотной смеси от 10 Па - 19,37 нм. By the method of pulsed laser deposition in atmosphere of an argon-nitrogen gas mixture, for the first time thin InGaAsN films on GaAs and Si substrates were obtained from the InGaAs target. The InGaAs target was formed by uniaxial pressing from GaAs and InAs powders. The surface morphology and structure of these thin films are studied by atomic force microscopy and X-ray diffraction. It is shown that InGaAsN films on Si have an average crystal size of 0,93 nm, and InGaAsN films on GaAs of 0,99 nm. It is determined that a decrease in the pressure of an argon-nitrogen mixture during pulsed laser deposition of thin InGaAsN films on GaAs and Si substrates leads to a decrease in the value of the root- mean-square roughness of the surface. The smallest root-mean-square roughness equal to 0,25 nm had a thin InGaAsN film on a GaAs substrate obtained in vacuum, the largest root-mean- square roughness of 19,37 nm had a thin InGaAsN film on a Si substrate obtained at the argon-nitrogen mixture pressure of 10 Pa -.

Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


2019 ◽  
Vol 6 (10) ◽  
pp. 106421
Author(s):  
Guankong Mo ◽  
Jiahui Liu ◽  
Guotao Lin ◽  
Zhuoliang Zou ◽  
Zeqi Wei ◽  
...  

2012 ◽  
Vol 1432 ◽  
Author(s):  
M. Baseer Haider ◽  
M. F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
Imran Bakhtiari

Abstract:Gallium nitride thin films were grown by pulsed laser deposition. Subsequently, post-growth annealing of the samples was performed at 400, and 600 oC in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was performed by atomic force microscopy, surface roughness of the films improved after annealing. Chemical analysis of the samples was performed using x-ray photon spectroscopy, stoichiometric Gallium nitride thin films were obtained for the samples annealed at 600 oC. Optical measurements of the samples were performed to investigate the effect of annealing on the band gap and optical constants the films.


2004 ◽  
Vol 829 ◽  
Author(s):  
S. P. Heluani ◽  
G. Simonelli ◽  
M. Villafuerte ◽  
G. Juarez ◽  
A. Tirpak ◽  
...  

ABSTRACTStructural and electronic transport properties of polycrystalline ZnO thin films, prepared by pulsed laser deposition, have been investigated. The films were deposited on glass and Si3N4/Si substrates using O2 and N2 atmospheres. X-ray analysis revealed preferential c-axis orientation perpendicular to the sample substrate. Films deposited under relatively high O2 pressure were highly resistive. However, the conductivity σ increased while the films were irradiated with ultraviolet light, showing an Arrhenius (In σ ∝ T-1) dependence as a function of temperature. The ZnO film deposited in N2 atmosphere exhibited at room temperature a resistivity ∼ 1 Ω cm, and a sheet carrier concentration ∼ 5 1012 cm-2. The variation of the conductivity with temperature, in the range 60 – 150 K, follows a In σ ∝ T-1/4 dependence characteristic of variable range hopping. An analysis of the experimental results of conductivity as a function of temperature, in terms of possible doping effects, as well as conduction mechanisms is presented.


2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


2018 ◽  
Vol 9 ◽  
pp. 686-692 ◽  
Author(s):  
Daiki Katsube ◽  
Hayato Yamashita ◽  
Satoshi Abo ◽  
Masayuki Abe

We have designed and developed a combined system of pulsed laser deposition (PLD) and non-contact atomic force microscopy (NC-AFM) for observations of insulator metal oxide surfaces. With this system, the long-period iterations of sputtering and annealing used in conventional methods for preparing a metal oxide film surface are not required. The performance of the combined system is demonstrated for the preparation and high-resolution NC-AFM imaging of atomically flat thin films of anatase TiO2(001) and LaAlO3(100).


RSC Advances ◽  
2016 ◽  
Vol 6 (116) ◽  
pp. 115039-115045 ◽  
Author(s):  
Qing Liu ◽  
Jieling Zhang ◽  
Ling Wei ◽  
Weifeng Zhang

Bi(1+x)FeO3 thin films with different Bi contents (x = 0%, 5%, and 10%) were grown on (001) SrTiO3 substrates with La0.65Sr0.35MnO3 (LSMO) buffered layers via pulsed laser deposition.


Sign in / Sign up

Export Citation Format

Share Document