scholarly journals Thermal Inertia at the MSL and InSight Mission Sites on Mars

2022 ◽  
Vol 6 (0) ◽  
pp. 0-0
Author(s):  
D. Singh ◽  
◽  
◽  
S. Uttam ◽  
◽  
...  
2020 ◽  
Author(s):  
Tilman Spohn ◽  
Matthias Grott ◽  
Nils Müller ◽  
Jörg Knollenberg ◽  
Christian Krause ◽  
...  

<p>The Heat Flow and Physical Properties Package HP<sup>3</sup> onboard the Nasa InSight mission has been on the surface of Mars for more than one Earth year. The instrument's primary goal is to measure Mars' surface heat flow through measuring the geothermal gradient and the thermal condunctivity at depths between 3 and 5m. To get to depth, the package includes a penetrator nicknamed the "Mole"  equipped with sensors to precisely measure the thermal conductivity. The Mole tows a tether with printed temperature sensors;  a device to measure the length of the tether towed and a tiltmeter will help to track the path of the Mole and the tether. Progress of the Mole has been stymied by difficulties of digging into the regolith. The Mole functions as a mechanical diode with an internal hammer mechanism that drives it forward. Recoil is balanced mostly by internal masses but a remaining 3 to 5N has to be absorbed by hull friction. The Mole was designed to work in cohesionless sand but at the InSight landing a cohesive duricrust of at least 7cm thickness but possibly 20cm thick was found. Upon initial penetration to 35cm depth, the Mole punched a hole about 6cm wide and 7cm deep into the duricrust, leaving more than a fourth of its length without hull friction.  It is widely agreed that the lack of friction is the reason for the failure to penetrate further. The HP<sup>3</sup> team has since used the robotic arm with its scoop to pin the Mole to the wall of the hole and helped it penetrate further to almost 40cm. The initial penetration rate of the Mole has been used to estimate a penetration resistance of 300kPa. Attempts to crush the duricrust a few cm away from the pit have been unsuccessful from which a lower bound to the compressive strength of 350kPa is estimated.  Analysis of the slope of the steep walls of the hole gave a lower bound to cohesion of 10kPa. As for thermal properties, a measurement of the thermal conductivity of the regolith with the Mole thermal sensors resulted in 0.045 Wm<sup>-1</sup>K<sup>-1</sup>.  The value is considerably uncertain because part of the Mole having contact to air.  The HP³ radiometer has been monitoring the surface temperature next to the lander and a thermal model fitted to the data give a regolith thermal inertia of  189 ± 10 J m<sup>-2</sup> K<sup>-1</sup> s<sup>-1/2</sup>. With best estimates of heat capacity and density, this corresponds to a thermal conductivity of 0.045 Wm<sup>-1</sup>K<sup>-1</sup>, consistent with the above measurement using the Mole. The data can be fitted well with a homogeneous soil model, but observations of Phobos eclipses in March 2019 indicate that there possibly is a thin top layer of lower thermal conductivity. A model with a top 5 mm layer of 0.02 Wm-1K-1 above a half-space of 0.05 Wm-1K-1 matches the amplitudes of both the diurnal and eclipse temperature curves. Another set of eclipses will occur in April 2020.</p><p> </p>


2018 ◽  
Author(s):  
Xiaoqing Chen ◽  
Hailong Li ◽  
Xueqiang Li ◽  
Yabo Wang ◽  
Kai Zhu

2019 ◽  
Vol 943 (1) ◽  
pp. 68-75
Author(s):  
S.G. Pugacheva ◽  
E.A. Feoktistova ◽  
V.V. Shevchenko

The article presents the results of astrophysical studies of the Moon’s reflected and intrinsic radiation. We studied the intensity of the Moon’s infrared radiation and, thus, carried out a detailed research of the brightness temperature of the Moon’s visible disc, estimated the thermal inertia of the coating substance by the rate of its surface cooling, and the degree of the lunar soil fragmentation. Polarimetric, colorimetric and spectrophotometric measurements of the reflected radiation intensity were carried out at different wavelengths. In the article, we present maps prepared based on our measurement results. We conducted theresearch of the unique South Pole – Aitken basin (SPA). The altitude profiles of the Apollo-11 and Zond-8 spacecrafts and the data of laser altimeters of the Apollo-16 and Apollo-15 spacecrafts were used as the main material. Basing upon this data we prepared a hypsometric map of SPA-basing global relief structure. A surface topography map of the Moon’s Southern Hemisphere is given in the article. The topography model of the SPA topography surface shows displacement centers of the altitude topographic rims from the central rim. Basing upon the detailed study of the basin’s topography as well as its “depth-diameter” ratio we suggest that the basin originated from the impact of a giant cometary body from the Orta Cloud. In our works, we consider the Moon as a part of the Earth’s space infrastructure. High growth rates of the Earth’s population, irrational nature management will cause deterioration of scarce natural resources in the near future. In our article, we present maps of the natural resources on the Moon pointing out the most promising regions of thorium, iron, and titanium. Probably in 20 or 40 years a critical mining level of gold, diamonds, zinc, platinum and other vital rocks and metals will be missing on the Earth.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takehiko Arai ◽  
Tatsuaki Okada ◽  
Satoshi Tanaka ◽  
Tetsuya Fukuhara ◽  
Hirohide Demura ◽  
...  

AbstractThe thermal infrared imager (TIR) onboard the Hayabusa2 spacecraft performed thermographic observations of the asteroid 162173 Ryugu (1999 JU$$_3$$ 3 ) from June 2018 to November 2019. Our previous reports revealed that the surface of Ryugu was globally filled with porous materials and had high surface roughness. These results were derived from making the observed temperature maps of TIR using a projection method onto the shape model of Ryugu as geometric corrections. The pointing directions of TIR were calculated using an interpolation of data from the SPICE kernels (NASA/NAIF) during the periods when the optical navigation camera (ONC) and the light detection and ranging (LIDAR) observations were performed. However, the mapping accuracy of the observed TIR images was degraded when the ONC and LIDAR were not performed with TIR. Also, the orbital and attitudinal fluctuations of Hayabusa2 increased the error of the temperature maps. In this paper, to solve the temperature image mapping problems, we improved the correction method by fitting all of the observed TIR images with the surface coordinate addressed on the high-definition shape model of Ryugu (SFM 800k v20180804). This correction adjusted the pointing direction of TIR by rotating the TIR frame relative to the Hayabusa2 frame using a least squares fit. As a result, the temperature maps spatially spreading areas were converged within high-resolved $$0.5^\circ$$ 0 . 5 ∘ by $$0.5^\circ$$ 0 . 5 ∘ maps. The estimated thermal inertia, for instance, was approximately 300$$\sim$$ ∼ 350 Jm$$^{-2}$$ - 2 s$$^{-0.5}$$ - 0.5 K$$^{-1}$$ - 1 at the hot area of the Ejima Saxum. This estimation was succeeded in case that the surface topographic features were larger than the pixel scale of TIR. However, the thermal inertia estimation of smooth terrains, such as the Urashima crater, was difficult because of surface roughness effects, where roughness was probably much smaller than the pixel scale of TIR.


Author(s):  
Cristian F Chavez ◽  
T G Müller ◽  
J P Marshall ◽  
J Horner ◽  
H Drass ◽  
...  

Abstract The Hilda asteroids are among the least studied populations in the asteroid belt, despite their potential importance as markers of Jupiter’s migration in the early Solar system. We present new mid-infrared observations of two notable Hildas, (1162) Larissa and (1911) Schubart, obtained using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST), and use these to characterise their thermal inertia and physical properties. For (1162) Larissa, we obtain an effective diameter of 46.5$^{+2.3}_{-1.7}$ km, an albedo of 0.12 ± 0.02, and a thermal inertia of 15$^{+10}_{-8}$ Jm−2s1/2K−1. In addition, our Larissa thermal measurements are well matched with an ellipsoidal shape with an axis ratio a/b=1.2 for the most-likely spin properties. Our modelling of (1911) Schubart is not as refined, but the thermal data point towards a high-obliquity spin-pole, with a best-fit a/b=1.3 ellipsoidal shape. This spin-shape solution is yielding a diameter of 72$^{+3}_{-4}$ km, an albedo of 0.039± 0.02, and a thermal inertia below 30 Jm−2s1/2K−1 (or 10$^{+20}_{-5}$ Jm−2s1/2K−1). As with (1162) Larissa, our results suggest that (1911) Schubart is aspherical, and likely elongated in shape. Detailed dynamical simulations of the two Hildas reveal that both exhibit strong dynamical stability, behaviour that suggests that they are primordial, rather than captured objects. The differences in their albedos, along with their divergent taxonomical classification, suggests that despite their common origin, the two have experienced markedly different histories.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


2021 ◽  
Vol 300 ◽  
pp. 117363
Author(s):  
M.H. Benzaama ◽  
L.H. Rajaoarisoa ◽  
M.C. Lekhal ◽  
S. Menhoudj ◽  
A.M. Mokhtari

Sign in / Sign up

Export Citation Format

Share Document