Boosting the share of onsite PV-electricity utilization by optimized scheduling of a heat pump using buildings thermal inertia

2018 ◽  
Vol 137 ◽  
pp. 248-258 ◽  
Author(s):  
Ajit Toradmal ◽  
Thomas Kemmler ◽  
Bernd Thomas
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6282
Author(s):  
Maria Pinamonti ◽  
Alessandro Prada ◽  
Paolo Baggio

The use of photovoltaic (PV) energy in combination with heat pump systems for heating and cooling of residential buildings can lead to renewable energy self-consumption, reducing the energy required from the grid and the carbon footprint of the building uses. However, energy storage technologies and control strategies are essential to enhance the self-consumption level. This paper proposes and analyzes a new control strategy for the operation of a modulating air-source heat pump, based on the actual PV availability. The solar energy surplus is stored as thermal energy by the use of water tanks and the activation of the thermal capacitance of the building. The efficacy of the control strategy is evaluated considering different rule-based strategies, and different boundary conditions. The effect of climate data, building insulation level and thermal inertia are investigated and compared. The results show the efficacy of the proposed strategy to decrease up to 17% the amount of electricity purchased from the grid and to increase the self-consumption by 22%, considering a high-insulated building in Bolzano, Northern Italy. The thermal mass activation is found effective to increase the self-consumption of the system. Nonetheless, the achievable energy reduction depends largely on the building characteristics and the boundary conditions.


2018 ◽  
Vol 8 (12) ◽  
pp. 2399 ◽  
Author(s):  
Giulia Alessio ◽  
Michele De Carli ◽  
Angelo Zarrella ◽  
Antonino Di Bella

In recent years many types of radiant systems have been installed in buildings. Meanwhile, practitioners debate on which thermal inertia of radiant systems fit better and which control strategies should be better in buildings, depending on the insulation level and thermal inertia of the structures. In particular, in new and retrofitted buildings, where the envelope presents high levels of insulation, it is argued if it is better to have low or high inertia radiant systems for controlling the indoor operative temperature and avoid overheating, especially in mid-seasons when the outdoor temperature is mild and solar radiation is high. For this purpose a room with three types of insulation level has been analysed combining different types of structures (masonry, and light and timber walls) and three types of radiant systems (classic wet floor, dry floor, and ceiling). Two operation modes have been simulated: fixed supply temperature and variable temperature according to the outdoor temperature. The results looked at the embedded and control efficiency, the energy performance in case of coupling with a water to water heat pump and the long-term possible overheating analysis. The embedded and control efficiency in dynamic conditions has been evaluated and compared with different possible definitions, in particular with steady state conditions, former EN15316-2-2007, and current EN15316-2-2017. New values for the current standard are suggested based on the results of this work, since the former and existing values overestimate the seasonal losses of floor and radiant systems in heating conditions. The paper shows that working at variable temperature according to the outdoor air temperature leads to longer operation time. The temperature, on average, lowers, and coupling the radiant system with a water to water heat pump leads to lower consumptions in the case of variable supply temperature compared to fixed supply temperature over the season. The seasonal coefficient of performance of the whole system, i.e. the heat pump and auxiliary pumps, leads to overall lower energy consumption in the case of variable supply temperature. The simulations did not show any relevant problem of discomfort from December to February. Overtemperature effects in terms of operative temperatures over the dead band of the control systems are not especially due to the radiant system, but they also occur in any case with ideal convective systems. The paper demonstrates that in general the radiant floor systems perform better than radiant ceilings in heating conditions and there is no evidence that dry floor systems perform better than wet screed systems in all the types of buildings regardless of the level of insulation and thermal inertia.


2020 ◽  
Vol 2 (4) ◽  
pp. 393-403
Author(s):  
Yunfei Mu ◽  
Xianjun Meng ◽  
Lijia Du ◽  
Qian Xiao ◽  
Hongjie Jia ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2704 ◽  
Author(s):  
Cristina Baglivo ◽  
Sara Bonuso ◽  
Paolo Congedo

A concept of Air-Cooled Heat Pump (ACHP) coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE), also called Horizontal Earth-To-Air Heat Exchanger (EAHX), has been proposed. The Air-Cooled Heat Pump is a system which transfers heat from outside source (air) to inside sink (water) and vice versa in summertime. The innovation is to provide a geothermal treatment of pre-heating/cooling of air before meeting the evaporator in winter or the condenser in summer of the heat pump. Besides, it is known that the variations of the ground temperature, respect to the external air one, are mitigated already in the first layers of the ground throughout the year, due to the high thermal inertia of the ground, letting the heat pump work with more mitigated conditions, improving the performances. The behaviour of HAGHE has been investigated by varying the length and the installation depth of the probes, the air flow rate and the ground thermal properties. All the combinations have been implemented using TRNSYS 17 software (Transient System Simulation Program) to obtain the outlet temperatures from HAGHE, resulting from the 54 configurations. The results are compared in terms of Coefficient of Performance (COP) in wintertime and Energy Efficiency Ratio (EER) in summertime between configurations with and without the coupling with HAGHE. In addition, two seasonal performance SCOP and SEER coefficients have been calculated considering, not only the inlet air temperatures into the Air-Cooled Heat Pump, but also their frequency of occurrence, the off-set external temperature (16 °C), the nominal external temperature and heating and cooling loads.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5098
Author(s):  
Matteo Dongellini ◽  
Paolo Valdiserri ◽  
Claudia Naldi ◽  
Gian Luca Morini

The influence of emitters, heat pump size and building envelope thermal inertia was investigated on the energy consumption of a heat pump-based heating system with a numerical study performed with the dynamic software TRNSYS. An algorithm based on a Thermal Inertia Control Logic (TICL), which can exploit the capability of the building envelope to store thermal energy, has been applied. When the proposed algorithm is employed, the indoor air temperature set-point is increased when the outdoor temperature is larger than the bivalent temperature of the building-heat pump system. Different configurations of the heating system were simulated considering either convective (fan-coil) or radiant (radiant floor) emitters coupled to a variable-speed air-to-water heat pump. Simulations have been carried out considering a reference building derived from the IEA SHC Task 44 and evaluating the influence of the proposed control logic on both the heat pump seasonal energy performance and the internal comfort conditions perceived by the building users. The obtained results highlight how the introduced TICL can guarantee the use of downsized heat pumps, coupled to radiant emitters, with a significant enhancement of the seasonal performance factor up to 10% and a slight improvement of comfort conditions. On the other hand, when convective terminal units are considered the proposed logic is not effective and the overall energy consumption of the system increases up to 15%.


2021 ◽  
Vol 257 ◽  
pp. 01022
Author(s):  
Xianfa Hu ◽  
Shuqing Zhang ◽  
Zhen Peng ◽  
Shaopu Tang ◽  
Ning Liu

In order to fully exploit the dynamic operation characteristics of absorption heat pump, a dynamic simulation model of LiBr absorption heat pump considering mass transfer and distribution parameters is established. The thermal inertia characteristics of the system are studied, and the thermal performance and crystallization characteristics of the system are analyzed under the conditions of heat source temperature change, cooling water temperature change and refrigerant water temperature change. The results show that: the model can accurately simulate the steady-state and dynamic characteristics of the absorption heat pump; the thermal inertia of the unit is mainly related to the mass of the solution stored in the unit; the upper limit of the heat source inlet temperature is affected by the COP of the system and the crystallization risk, the decrease of the inlet temperature of cooling water can increase the COP of the system, and the lower limit is limited by the crystallization risk, and the cooling water inlet temperature is affected by the crystallization risk , and the lower limit of the inlet temperature of cooling water is limited by the crystallization characteristics. The upper limit of the inlet temperature of refrigerant water is not limited by the crystallization characteristics, but is mainly limited by the user’s energy demand. This provides a reference for the dynamic operation of absorption heat pump.


Sign in / Sign up

Export Citation Format

Share Document