scholarly journals BAND GAP CHARACTERISTICS OF ONE-DIMENSIONAL QUASI-PERIODIC PHONONIC CRYSTALS WITH LAYER THICKNESS ARRANGED BY TM (THUE-MORSE) SEQUENCE

Author(s):  
Li Shang-da ◽  
Liu Yan
2015 ◽  
Vol 723 ◽  
pp. 778-784 ◽  
Author(s):  
Xin Yan

The band gap characteristics of phononic crystal is influenced by material and structure etc. Based on the transmission matrix method, the first band gap characteristics of one-dimensional phononic crystal were numerical simulation with different ratio, and these phononic crystals were made form aluminum, lead, steel, carbon and epoxy resin materials. These results show that phononic crystal structure made from high density materilal are more easier to form wide band gap, and there are also more easier to form wide band gap under the same proportion. These results provide theoretical basis for the design of one-dimensional phononic crystal devices.


2020 ◽  
Vol 14 (5) ◽  
Author(s):  
Zheng-wei Li ◽  
Xin-sheng Fang ◽  
Bin Liang ◽  
Yong Li ◽  
Jian-chun Cheng

2022 ◽  
Author(s):  
Z.J. Tan ◽  
Zhao Zhang

Abstract Additive Manufacturing (AM) is widely used to fabricate phononic crystals (PnCs) in recent years. Friction Stir Additive Manufacturing (FSAM) is a new-type solid state fabrication technology which is fusion free with low distortions. FSAM was selected to fabricate the designed PnCs. The manufactured specimen was distorted due to the temperature rise in the manufacturing process and the band gaps (BGs) were changed with the distortions. Results indicate that the band gap of the PnCs moves to be in higher frequency domain due to the residual distortions of the manufactured PnCs. The residual distortion of FSAM PnCs is 2.77 times smaller in comparison with the Tungsten Inert Gas (TIG) welding. So, the differences of the band gap between the designed PnCs and the FSAM specimen are only in the range of 0.15%- 0.55% due to the lower temperature rise in FSAM. The further analysis shows that the change of the BGs is caused by the growth of the inertia moment for the FSAM PnCs. With the increase of the rotating speed in FSAM, the residual distortion of the FSAM PnCs is increased due to the increase of the welding temperature. This can lead to the increase of the inertia moment, which is the key reason for the increase of the BG characteristics of the FSAM PnCs.


2005 ◽  
Vol 73 (1) ◽  
pp. 167-170 ◽  
Author(s):  
Gang Wang ◽  
Xisen Wen ◽  
Jihong Wen ◽  
Yaozong Liu

The propagation of longitudinal elastic waves in quasi one-dimensional structure consisting of harmonic oscillators periodically jointed on a slender beam is studied. Sub-frequency locally resonant band gap with highly asymmetric attenuation is observed in both theoretical and experimental results, and both results match well. The stiffness and mass ratios are found analytically as two factors that influence the actual attenuation in the band gap of the locally resonant phononic crystals. The study on the weights of the two factors shows that the stiffness ratio is the key one. Thus, the reason for the mismatch between the regions of the sharp attenuation and the theoretical band gap in the locally resonant phononic crystals is discovered.


2013 ◽  
Vol 81 (4) ◽  
Author(s):  
Zuguang Bian ◽  
Wei Peng ◽  
Jizhou Song

Phononic crystals make the realization of complete acoustic band gaps possible, which suggests many applications such as vibration isolation, noise suppression, acoustic barriers, filters, wave guides, and transducers. In this paper, an analytic model, based on the transfer matrix method, is developed to study the band structures of bulk acoustic waves including SH-, P-, and SV-waves in a one-dimensional phononic crystal, which is formed by alternating strips of two different materials. The analysis is demonstrated by the phononic crystal of Ba0.7Sr0.3TiO3 (BST) and polybutylene terephthalate (PBT), whose elastic properties depend strongly on the temperature. The results show that some band gaps are very sensitive to the temperature. Depending on the wave mode, the center frequency of the first band gap may decrease over 25% and band gap width may decrease over 60% as the temperature increases from 30 °C to 50 °C. The transmission of acoustic waves in a finite phononic crystal is also studied through the coefficient of transmission power. These results are very useful for the design and optimization of thermal tuning of phononic crystals.


2011 ◽  
Vol 197-198 ◽  
pp. 544-547
Author(s):  
Zhuo Fei Song ◽  
Qiang Song Wang ◽  
Ya Qiang Tian

Studied the ABAC pattern quasiperiodic phononic crystal properties by transfer matrix method, The results show that the frequency of ABAC pattern quasiperiodic phononic crystal initial band gap is lower than AB and AC pattern and the band gap is wider, simultaneously produce strongly localized resonant modes in the first band gap, frequency and quantity of the localized resonant modes are different with different parameters of material C. These properties are useful to the fabrication of the acoustic or elastic wave filters.


Sign in / Sign up

Export Citation Format

Share Document