scholarly journals EVALUATION OF THE GENETIC HOMOGENEITY OF THE SUGAR BEET LINES USED AS SOURCES IN HYBRID PRODUCTION

2021 ◽  
Vol 88 (3) ◽  
Author(s):  
A.A. Amangeldiyeva ◽  
A.M. Abekova ◽  
R.S. Yerzhebayeva
2001 ◽  
Vol 36 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Khalid Fares ◽  
C. M. G. C. Renard ◽  
Qamar R'Zina ◽  
Jean-Francois Thibault
Keyword(s):  

1998 ◽  
Vol 23 (4) ◽  
pp. 347-353
Author(s):  
N. B. Kift ◽  
F. A. Mellon ◽  
A. M. Dewar ◽  
A. F. G. Dixon
Keyword(s):  

1991 ◽  
Vol 83 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Christina Lind ◽  
Christer Hallden ◽  
Ian M. Moller
Keyword(s):  

1995 ◽  
Vol 94 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Steffen Lenzner ◽  
Kurt Zoglauer ◽  
Otto Schieder

Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 12-22 ◽  
Author(s):  
L. Pylypenko ◽  
K. Kalatur

Heterodera schachtii Schmidt, 1871 is one of the most economically important pests of sugar beet (Beta vulgaris L.) worldwide. It is also widespread in most sugar beet growing regions in Ukraine causing serious yield reduction and decreasing sugar content of sugar beet in infested fi elds. An advanced parasitic strategy of H. schachtii is employed to support nematode growth, reproduction and harmfulness. In intensive agriculture systems the nematode control measures heavily rely on nematicides and good agricultural practice (crop rota- tion in the fi rst place). But alternative strategies based on nematode resistant sugar beet cultivars and hybrids are required as none of nematicides approved for the open fi eld application are registered in Ukraine. Here we review the achievements and problems of breeding process for H. schachtii resistance and provide the results of national traditional breeding program. Since the beginning of 1980s fi ve sugar beet cultivars (Verchnyatskyi 103, Yaltuschkivska 30, Bilotcerkivska 45, BTs-40 and Yuvileynyi) and seventeen lines partly resistant or toler- ant to H. schachtii have been obtained throughout targeted crossing and progenies assessment in the infested fi elds. The further directions for better utilization of genetic sources for nematode resistance presented in na- tional gene bank collection are emphasized. There is a need for more accurate identifi cation of resistance genes, broader application of reliable molecular markers (suitable for marker-assisted selection of nematode resistant plants in the breeding process) and methods for genetic transformation of plants. Crop cash value and national production capacity should drive the cooperation in this fi eld. Knowledge as well as germplasm exchange are thereby welcomed that can benefi t breeding progress at national and international level.


Sign in / Sign up

Export Citation Format

Share Document