scholarly journals Prediksi Kelulusan Mata Kuliah Menggunakan Hybrid Fuzzy Inference System

2016 ◽  
Vol 2 (2) ◽  
pp. 60
Author(s):  
Abidatul Izzah ◽  
Ratna Widyastuti

AbstrakPerguruan Tinggi merupakan salah satu institusi yang menyimpan data yang sangat informatif jika diolah secara baik. Prediksi kelulusan mahasiswa merupakan kasus di Perguruan Tinggi yang cukup banyak diteliti. Dengan mengetahui prediksi status kelulusan mahasiswa di tengah semester, dosen dapat mengantisipasi atau memberi perhatian khusus pada siswa yang diprediksi tidak lulus. Metode yang digunakan sangat bervariatif termasuk metode Fuzzy Inference System (FIS). Namun dalam implementasinya, proses pembangkitan rule fuzzy sering dilakukan secara random atau berdasarkan pemahaman pakar sehingga tidak merepresentasikan sebaran data. Oleh karena itu, dalam penelitian ini digunakan teknik Decision Tree (DT) untuk membangkitkan rule. Dari uraian tersebut, penelitian bertujuan untuk memprediksi kelulusan mata kuliah menggunakan hybrid FIS dan DT. Data yang digunakan dalam penelitian ini adalah data nilai Posttest, Tugas, Kuis, dan UTS dari 106 mahasiswa Politeknik Kediri pengikut mata kuliah Algoritma dan Struktur Data. Penelitian ini diawali dari membangkitkan 5 rule yang selanjutnya digunakan dalam inferensi. Tahap selanjutnya adalah implementasi FIS dengan tahapan fuzzifikasi, inferensi, dan defuzzifikasi. Hasil yang diperoleh adalah akurasi, sensitivitas, dan spesifisitas  masing-masing adalah 94.33%, 96.55%, dan 84.21%.Kata kunci: Decision Tree, Educational Data Mining, Fuzzy Inference System, Prediksi. AbstractCollege is an institution that holds very informative data if it mined properly. Prediction about student’s graduation is a common case that many discussed. Having the predictions of student’s graduation in the middle semester, lecturer will anticipate or give some special attention to students who would be not passed. The method used to prediction is very varied including Fuzzy Inference System (FIS). However, fuzzy rule process is often generated randomly or based on knowledge experts that not represent the data distribution. Therefore, in this study, we used a Decision Tree (DT) technique for generate the rules. So, the research aims to predict courses graduation using hybrid FIS and DT. Dataset used is the posttest score, tasks score, quizzes score, and middle test score from 106 students of the Polytechnic Kediri who took Algorithms and Data Structures. The research started by generating 5 rules by decision tree. The next is implementation of FIS that consist of fuzzification, inference, and defuzzification. The results show that the classifier give a good result in an accuracy, sensitivity, and specificity respectively was 94.33%, 96.55% and 84.21%.Keywords: Decision Tree, Educational Data Mining, Fuzzy Inference System, Prediction.

Author(s):  
Tze Ling Jee ◽  
Kai Meng Tay ◽  
Chee Khoon Ng

A search in the literature reveals that the use of fuzzy inference system (FIS) in criterion-referenced assessment (CRA) is not new. However, literature describing how an FIS-based CRA can be implemented in practice is scarce. Besides, for an FIS-based CRA, a large set of fuzzy rules is required and it is a rigorous work in obtaining a full set of rules. The aim of this chapter is to propose an FIS-based CRA procedure that incorporated with a rule selection and a similarity reasoning technique, i.e., analogical reasoning (AR) technique, as a solution for this problem. AR considers an antecedent with an unknown consequent as an observation, and it deduces a conclusion (as a prediction of the consequent) for the observation based on the incomplete fuzzy rule base. A case study conducted in Universiti Malaysia Sarawak is further reported.


Author(s):  
Patrícia F. P. Ferraz ◽  
Tadayuki Yanagi Junior ◽  
Yamid F. Hernandez-Julio ◽  
Gabriel A. e S. Ferraz ◽  
Maria A. J. G. Silva ◽  
...  

ABSTRACT The aim of this study was to estimate and compare the respiratory rate (breath min-1) of broiler chicks subjected to different heat intensities and exposure durations for the first week of life using a Fuzzy Inference System and a Genetic Fuzzy Rule Based System. The experiment was conducted in four environmentally controlled wind tunnels and using 210 chicks. The Fuzzy Inference System was structured based on two input variables: duration of thermal exposure (in days) and dry bulb temperature (°C), and the output variable was respiratory rate. The Genetic Fuzzy Rule Based System set the parameters of input and output variables of the Fuzzy Inference System model in order to increase the prediction accuracy of the respiratory rate values. The two systems (Fuzzy Inference System and Genetic Fuzzy Rule Based System) proved to be able to predict the respiratory rate of chicks. The Genetic Fuzzy Rule Based System interacted well with the Fuzzy Inference System model previously developed showing an improvement in the respiratory rate prediction accuracy. The Fuzzy Inference System had mean percentage error of 2.77, and for Fuzzy Inference System and Genetic Fuzzy Rule Based System it was 0.87, thus indicating an improvement in the accuracy of prediction of respiratory rate when using the tool of genetic algorithms.


Author(s):  
Zahra Sadeghtabaghi ◽  
Mohsen Talebkeikhah ◽  
Ahmad Reza Rabbani

AbstractVitrinite reflectance (VR) is considered the most used maturity indicator of source rocks. Although vitrinite reflectance is an acceptable parameter for maturity and is widely used, it is sometimes difficult to measure. Furthermore, Rock-Eval pyrolysis is a current technique for geochemical investigations and evaluating source rock by their quality and quantity of organic matter, which provide low cost, quick, and valid information. Predicting vitrinite reflectance by using a quick and straightforward method like Rock-Eval pyrolysis results in determining accurate and reliable values of VR with consuming low cost and time. Previous studies used empirical equations for vitrinite reflectance prediction by the Tmax data, which was accompanied by poor results. Therefore, finding a way for precise vitrinite reflectance prediction by Rock-Eval data seems useful. For this aim, vitrinite reflectance values are predicted by 15 distinct machine learning models of the decision tree, random forest, support vector machine, group method of data handling, radial basis function, multilayer perceptron, adaptive neuro-fuzzy inference system, and multilayer perceptron and adaptive neuro-fuzzy inference system, which are coupled with evolutionary optimization methods such as grasshopper optimization algorithm, bat algorithm, particle swarm optimization, and genetic algorithm, with four inputs of Rock-Eval pyrolysis parameters of Tmax, S1/TOC, HI, and depth for the first time. Statistical evaluations indicate that the decision tree is the most precise model for VR prediction, which can estimate vitrinite reflectance precisely. The comparison between the decision tree and previous proposed empirical equations indicates that the machine learning method performs much more accurately.


With problems at the hospital Dr. Cipto Mangunkusumo, namely borrowing linen when nurses make loans to the logistics division, so that the logistics division has difficulty in determining which linen is used more frequently or lent by nurses, because the type of linen that is very much causes difficulties in the division in determining which linen is obliged to return it quickly to the logistics division. In order for linen to be available again in the logistics division, in addition to a very large loan every month, the logistics division had difficulty determining the average loss of linen in one year. That way the problem that occurs to solve this problem is to use a method namely Fuzzy Tsukamoto to determine the average amount of loss of linen and to determine priority linen that will be replaced earlier when the linen change schedule is in progress or the linen return is speeded up by returning the type of linen that is very often used for. After calculating using the Fuzzy Tsukamoto method, priority linen can be produced, including a Bolster, Blanket, Mattress Pad, and Bed Cover. Based on the calculation of Fuzzy Tsukamoto by doing several stages, namely Fuzzyfication, Fuzzy Rule, Fuzzy Inference System, and Defuzzyfication resulting in an average amount of linen loss in one year is 222.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Rahib H. Abiyev

Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.


Sign in / Sign up

Export Citation Format

Share Document