Temporary laborer dies in fish processing plant in Massachusetts.

Author(s):  
Eddy Mantjoro

Abstract Goals to be achieved through this research are as follows: (1) the scientific explanation about the initial conditions of fishing effort in the area of ​​research in this area is South Minahasa; (2) To obtain information on the historical development of the fish processing industry in North Sulawesi and Minahasa south in particular; (3) To be informed of the obstacles and challenges faced by the fisheries sector investors, especially fish processing timber. This research focuses on one unit of the fish processing industry wooden fish processing plant, and then in the case study method is relevant. The case study method is expected that researchers can examine more detailed and focused on problems experienced by fish processing company. As a consequence the results can not be generalized as like which would otherwise require science. Unless some case studies on the same topic on other companies and the result is the same, the efforts generalizations can be made. However the results of the case study can paint a picture on the history, constraints and barriers to investment that occur in similar industries and other industries. The initial condition of fisheries business investment in South Minahasa in 1995 was still dominated by small-scale businesses, which is limited to household livelihoods of fishermen. How governance is still very traditional in terms of business objectives just to meet daily food needs. Wooden fish processing technology already existed and developed since the year 700 BC in Japan. In Indonesia, especially in North Sulawesi started introduced in 1927 by a Japanese man named Hara Ko. The new investment started in 1971 until now. Investment in fish processing faces many obstacles and challenges, namely (1) the limited market share, (2) Legal certainty is not guaranteed, (3) Investors from outside the region and abroad to invest by holding on minimal information about the culture and traditions of local communities (4 ) morale of local residents very traditional if not arguably worse. (5) The investment policy is supported by the local government level only at the Regent while Assiten level, down to the village more displays of terror and intimidation to investors. Keywords: fish factory, investment, history, constraints, obstacles Abstrak Tujuan yang ingin dicapai melalui penelitian ini ialah sebagai berikut: (1) Penjelasan ilmiah tentang kondisi awal usaha perikanan di wilayah penelitian dalam hal ini Daerah Minahasa Selatan. (2) Memperoleh informasi tentang sejarah perkembangan industri pengolahan ikan di Sulawesi Utara dan Minahasa selatan khususnya. (3) Mendapatkan informasi mengenai kendala dan tantangan yang dihadapi oleh investor bidang perikanan khususnya pengolahan ikan kayu. Penelitian ini berfokus pada satu unit industri pengolahan ikan yakni pabrik pengolahan ikan kayu, maka metode studi kasus di pandang relevan. Metode studi kasus diharapkan peneliti dapat mengkaji lebih rinci dan fokus pada masalah yang dialami oleh perusahan pengolahan ikan. Sebagai konsekwensinya hasil penelitian tidak dapat digeneralisir sebagai layaknya yang di syaratkan oleh ilmu pengetahuan. Kecuali beberapa studi kasus dengan topik yang sama pada perusahan lain dan hasilnya sama maka upaya generalisasi dapat dilakukan. Walau demikian hasil studi kasus dapat melukiskan gambaran mengenai sejarah, kendala dan hambatan investasi yang terjadi pada industri sejenis dan industri lainnya. Kondisi awal usaha perikanan di wilayah Minahasa selatan pada tahun 1995 ketika investasi pabrik pengolahan ikan kayu di mulai masih didominasi oleh usaha skala kecil, yaitu sebatas mata pencaharian rumah tangga nelayan. Cara kelola pun masih sangat tradisional dalam pengertian tujuan usaha hanya untuk memenuhi kebutuhan makanan harian. Teknologi pengolahan ikan kayu sudah ada dan berkembang sejak tahun 700 sebelum masehi di Jepang. Di Indonesia khususnya di Sulawesi Utara mulai di perkenalkan pada tahun 1927 oleh orang Jepang bernama Hara Ko. Investasi baru dimulai pada tahun 1971 hingga sekarang. Investasi bidang pengolahan ikan menghadapi banyak kendala dan tantangan, yaitu (1) keterbatasan pangsa pasar, (2) Kepastian hukum tidak terjamin, (3) Investor dari luar daerah dan luar negeri berinvestasi dengan berpegang pada informasi minim mengenai budaya dan tradisi masyarakat lokal (4) moral kerja penduduk lokal amat tradisional jika tidak boleh dikatakan buruk.(5) Kebijakan investasi ditunjang oleh pemerintah daerah hanya pada level Bupati sedangkan level assiten, ke bawah sampai kelurahan lebih banyak menampilkan teror dan intimidasi kepada investor. Kata Kunci : pabrik ikan, investasi, sejarah, kendala, hambatan


2018 ◽  
Vol 282 ◽  
pp. 71-83 ◽  
Author(s):  
Krzysztof Skowron ◽  
Joanna Kwiecińska-Piróg ◽  
Katarzyna Grudlewska ◽  
Agnieszka Świeca ◽  
Zbigniew Paluszak ◽  
...  

2003 ◽  
Vol 66 (1) ◽  
pp. 52-60 ◽  
Author(s):  
ADAM D. HOFFMAN ◽  
KENNETH L. GALL ◽  
DAWN M. NORTON ◽  
MARTIN WIEDMANN

Reliable data on the sources of Listeria monocytogenes contamination in cold-smoked fish processing are crucial in designing effective intervention strategies. Environmental samples (n = 512) and raw fish samples (n = 315) from two smoked fish processing facilities were screened for L. monocytogenes, and all isolates were subtyped by automated ribotyping to examine the relationship between L. monocytogenes contamination from raw materials and that from environmental sites. Samples were collected over two 8-week periods in early spring and summer. The five types of raw fish tested included lake whitefish, sablefish, farm-raised Norwegian salmon, farm-raised Chilean salmon, and feral (wild-caught) salmon from the U.S. West Coast. One hundred fifteen environmental samples and 46 raw fish samples tested positive for L. monocytogenes. Prevalence values for environmental samples varied significantly (P < 0.0001) between the two plants; plant A had a prevalence value of 43.8% (112 of 256 samples), and plant B had a value of 1.2% (3 of 256 samples). For plant A, 62.5% of drain samples tested positive for L. monocytogenes, compared with 32.3% of samples collected from other environmental sites and 3.1% of samples collected from food contact surfaces. Ribotyping identified 11 subtypes present in the plant environments. Multiple subtypes, including four subtypes not found on any raw fish, were found to persist in plant A throughout the study. Contamination prevalence values for raw fish varied from 3.6% (sablefish) to 29.5% (U.S. West Coast salmon), with an average overall prevalence of 14.6%. Sixteen separate L. monocytogenes subtypes were present on raw fish, including nine that were not found in the plant environment. Our results indicate a disparity between the subtypes found on raw fish and those found in the processing environment. We thus conclude that environmental contamination is largely separate from that of incoming raw materials and includes strains persisting, possibly for years, within the plant. Operational and sanitation procedures appear to have a significant impact on environmental contamination, with both plants having similar prevalence values for raw materials but disparate contamination prevalence values for the environmental sites. We also conclude that regular L. monocytogenes testing of drains, combined with molecular subtyping of the isolates obtained, allows for efficient monitoring of persistent L. monocytogenes contamination in a processing plant.


2003 ◽  
Vol 206 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Dagmara Mędrala ◽  
Waldemar Dąbrowski ◽  
Urszula Czekajło-Kołodziej ◽  
Elżbieta Daczkowska-Kozon ◽  
Anna Koronkiewicz ◽  
...  

2007 ◽  
Vol 2007 (7) ◽  
pp. 1-27 ◽  
Author(s):  
Miroslav Colic ◽  
Wade Morse ◽  
Jason Hicks ◽  
Ariel Lechter ◽  
Jan D. Miller

Author(s):  
Luana Morena Rodrigues Vitor Dias Ferraciolli ◽  
Danielle De Bem Luiz ◽  
Liliana Pena Naval

The most common problems in the fish processing industry relate to high water consumption and the generation of effluents with concentrated organic loads. Given that reuse can represent an alternative for sustainable development, this study sought to assess the potential for recycling effluents produced in a fish-processing plant. In order to do so, the final industrial effluent was analyzed using the American Public Health Association (APHA) standard effluent-analysis method (2005). In addition, the study assessed treatments which produce effluents meeting the requirements prescribed by different countries' regulations for reuse and recycling. The results found that effluents with smaller organic loads, such as those from health barriers and monoblock washing, can be treated in order to remove nutrients and solids so that they can be subsequently reused. For effluents produced by the washing and gutting cylinders, it is recommended that large fragments of solid waste be removed beforehand. Effluents can in this way attain a quality compatible with industrial reuse. This study further highlights the possibility of treating effluents so as comply with drinking water standards. This would potentially allow them to be used within the actual fish-processing procedure; in such a case, a revision of standards and measures for controlling use should be considered to prevent microbiological damage to products and risks to handlers and final consumers.


2011 ◽  
Vol 36 (12) ◽  
pp. 3439-3444 ◽  
Author(s):  
V.M.F. Alexandre ◽  
A.M. Valente ◽  
Magali C. Cammarota ◽  
Denise M.G. Freire

2004 ◽  
Vol 54 (6) ◽  
pp. 2013-2017 ◽  
Author(s):  
Isao Yumoto ◽  
Megumi Hishinuma-Narisawa ◽  
Kikue Hirota ◽  
Tomohiro Shingyo ◽  
Fumihiko Takebe ◽  
...  

A novel alkaliphile was isolated from a drain of a fish processing plant. The isolate grew at a pH range of 7–10. Cells were Gram-positive, facultatively aerobic, motile rods with peritrichous flagella. Colonies were orange or yellow in colour. Catalase and oxidase reactions were positive. The isolate grew in 0–12 % NaCl but not above 15 % NaCl. Its cell extract exhibited 567 times higher catalase activity than an Escherichia coli cell extract. The major cellular fatty acids were iso-C13 : 0, anteiso-C13 : 0, iso-C15 : 0, iso-C16 : 0, iso-C17 : 0, anteiso-C17 : 0 and iso-C17 : 1. Its DNA G+C content was 46·7 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing and chemotaxonomic data indicated that strain T-2-2T is a member of the genus Exiguobacterium. DNA–DNA hybridization revealed a low relatedness of the isolate to several phylogenetic neighbours (less than 25 %). On the basis of phenotypic characteristics, phylogenetic data and DNA–DNA relatedness data, the isolate merits classification as a novel species, for which the name Exiguobacterium oxidotolerans sp. nov. is proposed. The type strain is T-2-2T (=JCM 12280T=NCIMB 13980T).


Sign in / Sign up

Export Citation Format

Share Document