Experimental Investigations And Selection Of Optimal Cutting Conditions In Turning Of Ti-6al-4v Alloy With Different Cutting Fluids By Minimum Quantity Lubrication (MQL) Methodology

2012 ◽  
Vol 2 (1) ◽  
pp. 45-52
Author(s):  
M. Venkata Ramana ◽  
G. Krishna Mohan Rao ◽  
D. Hanumantha Rao
2021 ◽  
Vol 309 ◽  
pp. 01041
Author(s):  
S. Suresh ◽  
N. Sateesh ◽  
Ramsubbiah ◽  
B. Ch Nookaraju ◽  
D. Sivanagaraju ◽  
...  

This paper presents an investigation into the minimum quantity lubrication mode with Nano fluid during turning of titanium (TI6AL4V) alloy. In heavy cutting conditions, minimum quantity lubrication (MQL) has been observed, that, Nano-cutting fluids which have enrich thermal conductivity than base fluid, are begun to be used in MQL system. The addition of the required nano particle ratio to the base liquid is one of the most important issues that arise in this method. Therefore, this study aimed to find the optimum distribution rate of graphene nano particles having excellent properties and machining parameters. To do this, graphene nano particles were added to a vegetable-based cutting solution. Nano-cutting fluids were prepared in different volumetric concentrations. When turning of titanium (TI6AL4V) alloy, these Nano fluids were used in the MQL system. Three different parameters were added to the experimental design to study the performance of Nano fluids under several cutting conditions. i.e., speed, feed rate and depth off cut. Apart from this experimental design, three tests were carried out at each concentration ratio while keeping the machining parameters constant to clearly see the impact of concentration rates on surface roughness, flank wear. And crater wear. In addition, while chipping/fracture, were observed under all cutting conditions


2012 ◽  
Vol 155-156 ◽  
pp. 42-46 ◽  
Author(s):  
Song Mei Yuan ◽  
Si Liu ◽  
Lu Tao Yan ◽  
Qing Chun Xiong

Stricter environmental regulations are making the use of an ample amount of conventional coolant impossible because of its negative impact on the environment. Consequently, the use of minimum quantity lubrication (MQL) has been regarded as an promising alternative to conventional fluid coolant applications. Despite several studies, there have been a few investigations about the influence of the MQL nozzle position, such as distance from tool-workpiece contact zone, elevation angles, the included angle between jet direction and feed direction. The current study presents experimental investigations on influences of the above parameters on performance in end milling. Tool wear and surface roughness are experimentally studied to compare the effects of different positions. The results show that the setting location of the nozzle is an important factor regarding the effective application of MQL oil mist.


Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.


Sign in / Sign up

Export Citation Format

Share Document