OVERVIEW ON FLY ASH BASED GEOPOLYMER – REVIEW PAPER

2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
ALLABAKSH SHILAR FATHEALI ◽  
Keyword(s):  
Fly Ash ◽  
Author(s):  
A Fuzail Hashmi ◽  
Moin ul Haq
Keyword(s):  
Fly Ash ◽  

1988 ◽  
Vol 136 ◽  
Author(s):  
G. J. McCarthy ◽  
P. J. Tikalsky ◽  
R. L. Carrasquillo ◽  
O. E. Manz ◽  
A. Thedchanamoorthy

ABSTRACTThe objective of this summary is to report on work in progress that is examining parameters, measurable through chemical and XRD analyses, that could indicate whether a fly ash will enhance, degrade or have no effect on the sulfate resistance of fly ash concrete.Mehta [1–4] has discussed the factors that contribute to attack of sulfates on fly ash concrete. As noted in his review paper on this subject in the preceding volume in this series [1], the agents responsible for concrete expansion and cracking are alumina-bearing hydrates, such as calcium monosulfoaluminate and calcium aluminate hydrate, that are attacked by the sulfate ion to form ettringite, calcium trisulfoaluminate. Acidic type interactions between sulfate ions and calcium hydroxide also lead to strength and mass loss.


Author(s):  
Nayan Kawaduji Mohankar ◽  
Shrikant Solanke

Industrial waste productions are increased these days, which is causing grief to the environment. Hence it is necessary to cut down the waste generation or reuse the waste. It is needed to utilize the waste to reduce environment damage. It is known that ashes produced from the industries can be used in construction. Ashes like fly ash can successfully replaces the cement showing good results. Researchers are finding the new ways to use ashes in production of cement. Now a days cement manufactures adulterates the cement with pozzolanic material like fly ash, rice husk ash, sugarcane bagasse ash etc. Using these product in concrete, they not only reduces the pollution but also lower the price effectively. If these fillers added in proportion it enhances the properties of concrete like workability, strength, water absorption, permeability etc. considerably. This review paper represents the properties of concrete when cement gets partially replaced by sugarcane bagasse ash, fly ash and rice husk ash. This paper primarily concentrates on the properties like durability and strength when cement concrete contain fillers in it. It also considers the non-destructive tests which are performed.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012046
Author(s):  
I Vrdoljak

Abstract During the past years, due to the increase in the number of people and the increasing degree of industrialization, the amount of by-products produced, the so-called waste materials are becoming larger. As this problem grows with age, attempts are being made to find answers to the questions of how to use waste material purposefully in order to reduce the problem of disposing of large quantities of this type of material. One way to reduce the accumulation of waste material is to use it in construction materials. This literature review paper presents the research of the area dealing with the influence of fly ash application on properties of clay brick. The application of fly ash at various percentages in relation to the mass of clay and the influence of fly ash at different firing temperatures are studied.


2018 ◽  
Vol 19 ◽  
pp. 1-11 ◽  
Author(s):  
Mehmet Serkan Kirgiz

This review research aims to discuss the results obtained researches on cement containing pure cement, pulverised fly ash, and nanoparticles, in order for eliminating negative side effects underlie the substitution of by–products for pure Portland cement. Nanoparticles (NP) used in these researches are nanoTiO2, nanoSiO2, nanoCaCO3, fibers of carbon nano tube (CNT), nanolimestone (nanoCaCO3), nanoZrO2, nanoclays, and nanometakaolin (nMK) for improving properties of cement systems. Published manuscripts explains two methods regarding on the usage of nanoparticles for cement system: blending and ultrasonication for dispersion of nanoparticles. However, differences between blending and ultrasonication methods suggested by various researchers are also discussed. Experiments reported these papers include the water demand, the density, the setting–times, the heat of hydration, the fluidity, the compressive strength and the flexural strength. According to these results, nanoparticles increase the water demand and heat of hydration of cement; it decreases the density and fluidity for cement mortars, evidently. The most effective nanoparticles on early compressive and flexural strengths are fibers of carbon nano tube and nanoCaCO3. These papers also point effects of these nanoparticles on the strength gain of cement. This review paper inform us until Effect of nanomaterial on water demand and density section in this Part I. Second part of this review paper will explain Hydration properties of Portland pulverised fly ash cement section, Effect of nanomaterial on setting–time section, Effect of nanomaterial on heat of hydration section, Strength gain mechanisms for hardened Portland pulverised fly ash cement paste and mortar section, Effect of nanomaterial on compressive strength section, Effect of nanomaterial on flexural strength (Bending) section, and Conclusion section.


2019 ◽  
Vol 24 ◽  
pp. 37-44 ◽  
Author(s):  
Mehmet Serkan Kirgiz

The second part of this review paper will explain Hydration properties of Portland pulverised fly ash cement section, Effect of nanomaterial on setting–time section, Effect of nanomaterial on heat of hydration section, Strength gain mechanisms for hardened Portland pulverised fly ash cement paste and mortar section, Effect of nanomaterial on compressive strength section, Effect of nanomaterial on flexural strength (Bending) section, and Conclusion section. Experiments reported include the setting–times, the heat of hydration, the compressive strength gain, and the flexural strength gain in the current article. According to the result, nanoparticles, especially the GNP, increase the heat of hydration of cement, and accelerate the time of setting evidently, both initial and final setting-time. The most effective nanoparticle on early compressive strength gain and flexural strength gain is the GNP. The article also points the effects of the nanoparticles on the strength gain of cement comprehensively. Consequently, the prominent cement technology can use the nanoparticles dispersed in liquid by ultrasonication method to increase the properties of cement based materials effectively.


2018 ◽  
Vol 69 (7) ◽  
pp. 1661-1667 ◽  
Author(s):  
Aissa Bouaissi ◽  
Long Yuan Li ◽  
Ligia Mihaela Moga ◽  
Ioan Gabriel Sandu ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

This paper presents a review on fly ash as prime materials used for geopolymer. Due to its advantages of abundant resources, less in cost, great workability and high physical properties which lead to achieve high mechanical properties. Fly ash is considered as one of the largest generated industrial solid wastes or so-called industrial by products, around the world particularly in China, India and USA. The characteristics of fly ash allow it to be a geotechnical material to produce geopolymer cement or concrete as an alternative of Ordinary Portland cement. Many efforts are made in this direction to formulate a suitable mix design of fly ash based-geopolymer by focusing on fly ash as the main prime material. The physical properties, chemical compositions and chemical activation of fly ash are analysed and evaluated in this review paper. Reference has been made to different ASTM, ACI standards and other researches work in geopolymer area.


Sign in / Sign up

Export Citation Format

Share Document