scholarly journals Different mr-proANP-release in High Volume High Intensity Interval Exercise and Continuous Exercise Regimens with Matched Mean Intensity: A Cross-over Design Study

2020 ◽  
Vol 4 ◽  
pp. 5
Author(s):  
Julian Eigendorf
2017 ◽  
Vol 13 (2) ◽  
pp. 403-410 ◽  
Author(s):  
Victor Araújo Ferreira Matos ◽  
Daniel Costa de Souza ◽  
Rodrigo Alberto Vieira Browne ◽  
Victor Oliveira Albuquerque dos Santos ◽  
Eduardo Caldas Costa ◽  
...  

2018 ◽  
Vol 14 (2) ◽  
pp. 323-330 ◽  
Author(s):  
Ana Paula Trussardi Fayh ◽  
Victor Araújo Ferreira Matos ◽  
Daniel Costa de Souza ◽  
Victor Oliveira Albuquerque dos Santos ◽  
Cristiane da Silva Ramos Marinho ◽  
...  

2019 ◽  
Vol 119 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Flávia C. Pimenta ◽  
Fábio Tanil Montrezol ◽  
Victor Zuniga Dourado ◽  
Luís Fernando Marcelino da Silva ◽  
Gabriela Alves Borba ◽  
...  

2019 ◽  
Vol 44 (5) ◽  
pp. 557-566 ◽  
Author(s):  
Penelope Larsen ◽  
Frank Marino ◽  
Kerri Melehan ◽  
Kym J. Guelfi ◽  
Rob Duffield ◽  
...  

The aim of this study was to compare the effect of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on sleep characteristics, appetite-related hormones, and eating behaviour. Eleven overweight, inactive men completed 2 consecutive nights of sleep assessments to determine baseline (BASE) sleep stages and arousals recorded by polysomnography (PSG). On separate afternoons (1400–1600 h), participants completed a 30-min exercise bout: either (i) MICE (60% peak oxygen consumption) or (ii) HIIE (60 s of work at 100% peak oxygen consumption: 240 s of rest at 50% peak oxygen consumption), in a randomised order. Measures included appetite-related hormones (acylated ghrelin, leptin, and peptide tyrosine tyrosine) and glucose before exercise, 30 min after exercise, and the next morning after exercise; PSG sleep stages; and actigraphy (sleep quantity and quality); in addition, self-reported sleep and food diaries were recorded until 48 h after exercise. There were no between-trial differences for time in bed (p = 0.19) or total sleep time (p = 0.99). After HIIE, stage N3 sleep was greater (21% ± 7%) compared with BASE (18% ± 7%; p = 0.02). In addition, the number of arousals during rapid eye movement sleep were lower after HIIE (7 ± 5) compared with BASE (11 ± 7; p = 0.05). Wake after sleep onset was lower following MICE (41 min) compared with BASE (56 min; p = 0.02). Acylated ghrelin was lower and glucose was higher at 30 min after HIIE when compared with MICE (p ≤ 0.05). There were no significant differences between conditions in terms of total energy intake (p ≥ 0.05). HIIE appears to be more beneficial than MICE for improving sleep quality and inducing favourable transient changes in appetite-related hormones in overweight, inactive men. However, energy intake was not altered regardless of exercise intensity.


Sign in / Sign up

Export Citation Format

Share Document