scholarly journals Determination of chlorpheniramine enantiomers in pharmaceutical formulations by HPLC on chiral column with PDA detection

2020 ◽  
Vol 50 (2) ◽  
Author(s):  
Gizem Erensoy ◽  
Duygu Taşkın ◽  
Gamze Özgül Artuç ◽  
Elif Özdemir ◽  
Sumru Özkırımlı
Author(s):  
Vishal N Kushare ◽  
Sachin S Kushare

The present paper describes stability indicating high-performance thin-layer chromatography (HPTLC) assay method for Ozagrel in bulk drugs. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene: methanol: triethylamine (6.5: 4.0: 0.1 v/v/v). The system was found to give compact spot for Ozagrel (Rf value of 0.40 ± 0.010). Densitometric analysis of Ozagrel was carried out in the absorbance mode at 280 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2 = 0.999 with respect to peak area in the concentration range 30 - 120 ng/spot. The developed HPTLC method was validated with respect to accuracy, precision, recovery and robustness. Also to determine related substance and assay determination of Ozagrel that can be used to evaluate the quality of regular production samples. The developed method can also be conveniently used for the assay determination of Ozagrel in pharmaceutical formulations. The limits of detection and quantitation were 4.069 and 12.332 ng/spot, respectively by height. Ozagrel was subjected to acid and alkali hydrolysis, oxidation, photochemical and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and heat conditions. This indicates that the drug is susceptible to acid, base hydrolysis, oxidation and heat. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of said drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Ozagrel in bulk drug and tablet formulation.


Author(s):  
Abbas Shebeeb Al-kadumi ◽  
Sahar Rihan Fadhel ◽  
Mohammed Abdullah Ahmed ◽  
Luma Amer Musa

We proposed two simple, rapid, and convenient spectrophotometric methods are described for the determination of Amoxicillin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in first method) and colorimetric determination of the green colored solution for manganite ion at 610 nm formed after reaction of Amoxicillin with potassium permanganate as oxidant agent (in the second method) in basic medium. The working conditions of the methods were investigated and optimized. Beer's law plot showed a good correlation in the concentration range of 5-45 μg/ml. The detection limits and relative standared deviations were (2.573, 2.814 μg/ml) (2.137, 2.498) for the flame emission photometric method and (1.844, 2.016 μg/ml) (1.645,1.932) for colorimetric methods for capsules and suspensions respectively. The methods were successfully applied to the determination of Amoxicillin in capsules and suspensions, and the obtained results were in good agreement with the label claim. No interference was observed from the commonly encountered additives and expectancies.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


2020 ◽  
Vol 17 (1) ◽  
pp. 31-39
Author(s):  
Marilene Lopes Ângelo ◽  
Fernanda de Lima Moreira ◽  
Ana Laura Araújo Santos ◽  
Hérida Regina Nunes Salgado ◽  
Magali Benjamim de Araújo

Background:: Tibolone is a synthetic steroid commercialized by Organon under the brand name Livial (Org OD14), which is used in hormone therapy for menopause management and treatment of postmenopausal osteoporosis. Tibolone is defined as a selective tissue estrogenic activity regulator (STEAR) demonstrating tissue-specific effects on several organs such as brain, breast, urogenital tract, endometrium, bone and cardiovascular system. Aims:: This work aims to (1) present an overview of important published literature on existing methods for the analysis of tibolone and/or its metabolites in pharmaceutical formulations and biological fluids and (2) to conduct a critical comparison of the analytical methods used in doping control, pharmacokinetics and pharmaceutical formulations analysis of tibolone and its metabolites. Results and conclusions: : The major analytical method described for the analysis of tibolone in pharmaceutical formulations is High Pressure Liquid Chromatography (HPLC) coupled with ultraviolet (UV) detection, while Liquid Chromatography (LC) or Gas Chromatography (GC) used in combination with Mass Spectrometry (MS) or tandem mass spectrometry (MS/MS) is employed for the analysis of tibolone and/or its metabolites in biological fluids.


2020 ◽  
Vol 16 (3) ◽  
pp. 208-222
Author(s):  
Miglena Smerikarova ◽  
Stanislav Bozhanov ◽  
Vania Maslarska

Background: Sartans are mostly used as a part of combination with additional medicines in the therapy of essencial hypertension. Preferred combinations are ARB and thiazide diuretics (Hydrochlorothiazide (HCT) and Chlorthalidone (CHL)) or ARB and calcium antagonists. The number of sartans mostly prescribed by specialists is only seven - Candesartan (CDS), Eprosartan (EPS), Irbesartan (IBS), Losartan (LOS), Olmesartan (OMS), Telmisartan (TMS) and Valsartan (VLS). Methods: The widespread use of sartans in the treatment of hypertension requires reliable methods of analysis. Bulk drugs and pharmaceutical preparations should be analyzed to ensure the quality of the medicinal products reaching patients. On the other hand, the analysis of drugs in biological fluids aims to trace and improve patient care by adjusting the therapeutic doses of drugs. According to our knowledge, a review devoted to the analysis of sartans was published in 2014. Results: Spectral methods are widely used in the analysis of bulk drugs and pharmaceutical dosage forms due to their relatively simple procedures, low reagent and sample consumption, speed, precision and accuracy combined with accessibility and comparatively low cost of common apparatus. Many papers for determination of sartans in bulk drugs and pharmaceutical preparations based on liquid chromatographic techniques were published in the available literature. Among these methods, HPLC takes the leading place but UPLC and HPTLC are also present. Conclusion: The widespread use of sartans in the treatment of hypertension requires reliable methods of analysis. Bulk drugs and pharmaceutical preparations should be analyzed to ensure the quality of the medicinal products reaching patients. On the other hand, the analysis of drugs in biological fluids aims to trace and improve patient care by adjusting the therapeutic doses of drugs. Since 2014, many articles have been published on the sartans analysis and this provoked our interest to summarize the latest applications in the analysis of sartans in pharmaceutical formulations and biological media. Articles published from 2014 to 2018 are covered.


2013 ◽  
Vol 25 (7) ◽  
pp. 1734-1741 ◽  
Author(s):  
Ana Paula Pires Eisele ◽  
Débora Nóbile Clausen ◽  
César Ricardo Teixeira Tarley ◽  
Luiz Henrique Dall'Antonia ◽  
Elen Romão Sartori

Sign in / Sign up

Export Citation Format

Share Document