Effects of green manure of wild rocket (Diplotaxis tenuifolia L.) on cucumber rhizosphere fungal community

2021 ◽  
Vol 53 (1) ◽  
pp. 93-100
Author(s):  
X.H. Zhang ◽  
H.L Xie ◽  
Y.Y. Wang ◽  
X.G. Zhou

In pot culture, we evaluated the effects of green manure of wild rocket (Diplotaxis tenuifolia (L.) DC.) on cucumber (Cucumis sativus L.) rhizosphere fungal community composition. Cucumber rhizosphere fungal composition was analyzed by high-throughput amplicon sequencing of fungal ITS regions. Results showed that cucumber seedling rhizosphere fungal community composition was different between the fallow treatment and green manure treatment. However, green manure treatment did not affect the cucumber seedlings fungal community alpha diversity. Compared with the fallow treatment, cucumber grown in green manure of wild rocket had higher relative abundance of phylum Ascomycota but lower relative abundance of phylum Zygomycota. Moreover, green manure of wild rocket decreased operational taxonomic units (OTUs) classified as Pseudallescheria and Kernia spp. but increased OTUs classified as Humicola and Fusarium spp. in cucumber rhizosphere.

2018 ◽  
Vol 44 (2) ◽  
pp. 169-180 ◽  
Author(s):  
J.H. Zhang ◽  
X. Ge ◽  
D.D. Pan ◽  
P.L. Qiao ◽  
F.Z. Wu ◽  
...  

2021 ◽  
Author(s):  
Themistoklis Kourkoumpetis ◽  
Kristi L. Hoffman ◽  
Yuna Kim ◽  
David Y. Graham ◽  
Donna L. White ◽  
...  

Abstract To characterize the spatial variation of the mucosa-associated adherent mycobiota along the large intestine in individuals with a normal-colon, we performed eukaryotic rRNA operon’s internal transcribed spacer-2 sequencing to profile fungal community composition and structure in 70 mucosal biopsies taken from the cecum, ascending, transverse, descending colon, and rectum of 14 polyp-free individuals. The bacteriome of these samples was previously characterized by sequencing the V4 region of the 16S rRNA gene. We identified 64 amplicon sequence variants (ASVs) with the relative abundance no less than 0.05% from these colonic mucosa samples. Each individual has a unique community composition of the gut mycobiome (P = 0.001 for beta diversity). Alpha-diversity and beta-diversity did not differ significantly across the colon segments. The most common phyla (relative abundance) were Ascomycota (45.4%) and Basidiomycota (45.3%). The most common genera were Malassezia (28.2%) and Candida (13.4%). Malassezia was found in 13 of 14 individuals. Other fungi genera were sporadically found in the large intestine. The most common species were Malassezia restricta (22.7%), Candida albicans (11.9%), Malasseziales sp. (8.80%), unclassified fungi (7.80%), and Penicillium paneum (5.70%). Malasseziaceae was co-abundant with Enterobacteriaceae and co-exclusive with Barnesiellaceae, Rikenellaceae, and Acidaminococcaceae. Malassezia was widely colonized whereas other fungal genera were sporadically colonized in the large intestine. The physiologic and pathogenic functions of fungi in human gastrointestinal tract including Malasseziaceae that may interact with several bacterial families remain to be fully elucidated.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1917
Author(s):  
Tianma Yuan ◽  
Haihan Zhang ◽  
Qiaoli Feng ◽  
Xiangyu Wu ◽  
Yixin Zhang ◽  
...  

Fungi are an important, yet often, neglected component of the aquatic microflora, and is responsible for primary decomposition and further processing of organic matter. By comparison, the ecological roles of terrestrial fungi have been well-studied, but the diversity and function of fungi that populate aquatic environments remain poorly understood. Here, the impact of urbanization on fungal diversity and community composition in the canal system of Suzhou was assessed by sequencing the internal transcribed spacer 1 (ITS1) region of the rRNA operon. It was amplified from environmental DNA that has been extracted from water samples and pre-deployed decomposing leaves collected from nine sampling locations (high, medium and low urbanization) over two seasons. The fungal diversity and community composition were determined by bioinformatic analysis of the large DNA sequence datasets generated to identify operational taxonomic units (OTUs) for phylogenetic assignment; over 1 million amplicons were sequenced from 36 samples. The alpha-diversity estimates showed high differences in fungal diversity between water and leaf samples, and winter versus summer. Higher numbers of fungal OTUs were identified in both water and leaf samples collected in the summer, and fungal diversity was also generally higher in water than on colonized leaves in both seasons. The fungal community on leaves was usually dominated by Ascomycetes, especially in winter, while water samples contained more diversity at phylum level with Chytridiomycetes often prominent, particularly in summer. At a genus level, a very high relative abundance of Alternaria on leaves was observed in winter at all locations, in contrast to very low abundance of this genus across all water samples. Fungal community composition also varied between sampling locations (i.e., urbanization); in cluster analysis, samples from high urbanization locations formed a distinct cluster, with medium and low urbanization samples clustering together or in some instances, separately. Redundancy analysis shed further light on the relationships between variation in fungal community composition and water physico-chemical properties. Fungal community diversity variation and correlation with different parameters is discussed in detail, but overall, the influence of season outweighed that of urbanization. This study is significant in cataloguing the impact of urbanization on fungal diversity to inform future restoration of urban canal systems on the importance of protecting the natural aquatic fungal flora.


2017 ◽  
Vol 117-118 ◽  
pp. 16-20 ◽  
Author(s):  
Ryota Kataoka ◽  
Katsuhiko Nagasaka ◽  
Yasuhiro Tanaka ◽  
Hideki Yamamura ◽  
Shoya Shinohara ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

AbstractWastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.


Sign in / Sign up

Export Citation Format

Share Document